Pulse-ESRとCW-ESRによる照射黒コショウ中のラジカルの緩和時間解析

誌名	食品照射			
ISSN	03871975			
著者名	亀谷,宏美			
	菊地,正博			
	等々力,節子			
	古田,雅一			
	小林,泰彦			
	原,英之			
	下山,雄平			
	 鵜飼,光子			
発行元	日本食品照射研究協議会			
巻/号	47巻1号			
掲載ページ	p. 6-10			
発行年月	2012年9月			

農林水産省 農林水産技術会議事務局筑波産学連携支援センター Tsukuba Business-Academia Cooperation Support Center, Agriculture, Forestry and Fisheries Research Council Secretariat

Pulse-ESR と CW-ESR による照射黒コショウ中の ラジカルの緩和時間解析

亀谷宏美^{1)*},菊地正博²⁾,等々力節子¹⁾,古田雅一³⁾, 小林泰彦²⁾,原 英之⁴⁾,下山雄平²⁾,鵜飼光子⁵⁾

1)(独)農研機構食品総合研究所(〒305-8642 茨城県つくば市観音台 2-1-12)

2) (独)日本原子力研究開発機構(〒370-1292 群馬県高崎市綿貫町1233)

³⁾ 大阪府立大学(〒 599-8531 堺市中区学園町 1-1)

⁴⁾ ブルカー・バイオスピン株式会社(〒 221-0022) 神奈川県横浜市神奈川区守屋町 3-9)

5) 北海道教育大学(〒040-8567 北海道函館市八幡町1-2)

Analysis of Relaxation Times of Radicals in Irradiated Black Pepper Using Pulse-ESR and CW-ESR

Kameya Hiromi¹⁾ *, Kikuchi Masahiro²⁾, Todoriki Setsuko¹⁾, Furuta Masakazu³⁾, Kobayashi Yasuhiko²⁾, Hara Hideyuki⁴⁾, Shimoyama Yuhei²⁾ and Ukai Mitsuko⁵⁾

¹⁾ National Food Research Institute, 2-1-12 Kannondai, Tsukuba-shi, Ibaraki 305-8642 Japan

²⁾ Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 Japan

³⁾ Osaka Prefecture University, 1-1 Gakuen-cho, Sakai-shi, Oosaka 599-8531 Japan

⁴⁾ Bruker BIOSPIN, 3-9 Moriya-cho Yokohama-shi, Kanagawa, 221-0022 Japan

⁵⁾ Hokkaido University of Education, 1-2 Hachiman-cho, Hakodate-shi, Hokkaido 040-8567 Japan

Summary

We attempted measurement of radicals in irradiated black pepper using pulse-ESR and CW-ESR. Relaxation times (T_1 , T_2) of radicals in black pepper were measured using pulse-ESR. T_1 and T_2 were also calculated theoretical analysis using CW-ESR parameter. We succeeded in measurement of the field swept echo of irradiated black pepper using pulse-ESR. Pulse-ESR and CW-ESR were able to calculate T_1 and T_2 . T_1 values were showed no dose dependence. T_2 values showed increase according to irradiation. We revealed that T_1 and T_2 from pulse-ESR and CW-ESR were changed similarly before and after irradiation.

Key words: CW-ESR, pulse-ESR, γ-ray irradiation (γ線照射), relaxation time (緩和時間)

はじめに

ガンマ線の食品への照射は有効な殺菌処理とし て世界的に広がっている。ヨーロッパ連合は照射 食品の標準検知法として 10 種の分析法を定めて いる。その1つに電子スピン共鳴(Electron Spin Resonance; ESR)法が採択されている¹⁾⁻³⁾。ESR は ラジカルを計測する高性能機器で,観測されるスペ クトルの変化から検知を行っている。しかし,照射 によるスペクトル変化が極めて微小な低線量域の検

^{*}連絡先:hkameya@affrc.go.jp

知は困難である。著者らは植物性食品のガンマ線 照射誘導ラジカルを連続波(continuous wave; CW) 電子スピン共鳴法で計測し,スペクトルの変化だけ でなく,解析パラメータによる照射検知の可能性を 報告してきた⁴¹⁻⁷。

ESR 計測で得られる解析パラメータの一つ, ラ ジカルの緩和時間には,スピン-格子緩和時間(T₁) とスピン-スピン緩和時間(T₂)の2種がある⁸⁰。 励起されたスピンのエネルギーが軌道や分子の振動 エネルギーに変化し,他の系(格子)に流れて基底 レベルに戻るまでの時間をスピン-格子緩和時間 (T₁),ある励起状態のスピンがエネルギーを別なス ピンへと流して低準位に分布するまでの時間をスピ ン-スピン緩和時間(T₂)としている。ラジカル種 が異なる場合,ESR計測で得られる緩和時間に違 いが生じる⁸⁰。照射食品中のラジカルの緩和時間を 求めることで,照射による食品中のラジカル変化を 捉えることができる。

ー般にラジカルの緩和時間(T₁, T₂)は pulse-ESR の計測から求められる。しかし,照射食品中 に誘導されるラジカルについて,pulse-ESR 計測に よる報告はない⁹⁾。食品は非常に複雑な系で解析が 困難なためと考えられる。pulse-ESR による計測か ら緩和時間を求めることができれば,より低線量域 の照射検知に応用できる可能性がある。

本研究では pulse-ESR による照射黒コショウの 計測を試みた。また,著者らは CW-ESR の飽和曲 線から理論解析で算出した照射食品の緩和時間を 報告している¹⁰⁾。そこで,pulse-ESR で求めた緩和 時間と,CW-ESR から求めた計算値の比較を行っ た。

実験方法

1. 試料

試料として市販黒コショウを実験に供した。照射 は(独)日本原子力研究開発機構高崎量子応用研究所 で行った。照射は室温で⁶⁰Coの γ 線により処理さ れた。線量は1,10,25,50 kGyとした。線量率は 2 kGy/hで,照射時間により線量を調整した。照射 試料を ESR 試料管(外径 5mm ϕ)に3 cmの高さ になるように入れ、パラフィルムで封じて ESR 計 測検体とした。

2. pulse-ESR 測定

Pulse-ESR 機器は Bruker 社製の ESP-380E を用い た。磁場を安定に保つため、電磁石の冷却水は冷却 水循環装置により 20℃にコントロールした。pulse-ESR を起動させ、磁場を安定化させるために 30 分 間放置してから測定を開始した。測定は室温で行っ た。

Echo 測定は $\pi/2 - \pi$ pulse sequence により計測 した。測定パラメータは $\pi/2$ -pulse width; 16 ns, π -pulse width; 24 ns, Pulse interval; 200 ns, Recycle delay; 1ms とした。本来, $\pi/2$ -pulse width が 16 ns のとき, π -pulse width は 32 ns となる。しかし,本 実験に使用した pulse-ESR のピンダイオード性能で は, 16 ns のパルスから明瞭な矩形を得ることがで きないため,実験的に 16 ns, 24 ns を用いた。

緩和時間は echo 測定パラメータに基づき, $\pi/2 - \tau - \pi$ sequence により計測した。測定パラメータは $\pi/2$ -pulse width; 16 ns, π -pulse width; 24 ns, Pulse interval; 200 ns, Recycle delay; 1ms とした。T₂ は $\pi/2$ pulse $-\tau - \pi$ pulse $-\tau - (echo)$ の two pulse spin echo 法, T₁ は π pulse $- \tau - \pi/2$ pulse $- \tau - \pi$ puls

3. CW-ESR 測定

ESR 機器は Bruker 社製の EMX-plus を用いた。 磁場を安定に保つため、電磁石の冷却水は冷却水循 環装置により 20℃にコントロールした。ESR を起 動させ、磁場を安定化させるために 30 分間放置し てから測定を開始した。測定は室温で行った。

ESR の測定の主なパラメータは, Center Field; 250 mT, Sweep Width; 500 mT, Frequency; 9.849 ~ 9.857 GHz, Modulation frequency; 100 kHz, Modulation amplitude; 1 mT とした。マイクロ波強 度は 1 ~ 81mW まで変化させた。

CW-ESR による緩和時間の算出は Lund の方法 (ソースコード公開)¹¹⁾,線形理論による計算プログ ラムの詳細は既報¹⁰⁾ に依った。

実験結果および考察

1. pulse-ESR 計測

黒コショウの pulse-ESR 計測から明瞭な field swept echo を観測することに成功した。Fig. 1 に

Fig. 1 A field swept (330 to 350 mT) echo induced signal from γ -ray induced radical in irradiated black pepper. Twin peaks were show as arrow.

	Pulse-ESR value		CW-ESR value	
Irradiated sample (kGy)	$\begin{array}{c} T_1 \\ (\times \ 10 \ \mu sec) \end{array}$	T_2 (× 10 ² nsec)	Τ ₁ (μsec)	$\begin{array}{c} T_2 \\ (\times \ 10^2 \text{nsec}) \end{array}$
0	3.0	2.8	3.7	1.4
1	3.0	2.9	3.3	1.5
10	3.0	3.5	3.3	1.5
25	3.2	3.5	3.4	1.5
50	3.3	4.2	3.4	1.6

Table 1 Relaxation times (T_1 and T_2). The errors of measurements i.e. standard deviations for T_1 and T_2 were $\pm 2 \,\mu$ sec and ± 2 nsec, respectively.

25 kGy 照射黒コショウの field swept echo スペクト ルを示した。main peak のサイドに矢印で示す twin peak が観測され, hfc は 6 mT であった。

Field swept echo が観測できたため, 緩和時間 (T₁, T₂)の計測を行った。得られた値を Table 1 に示した。 T₁の照射よる値の変化は小さく, T₂ は顕著な値の 増加が確認された。

2. CW-ESR のスペクトル

Pulse-ESR 計測と同一の試料を CW-ESR で計測 した。Fig. 2 に非照射試料と 25kGy 照射試料のスペ クトルを同倍率で示した。黒コショウのスペクト ルは著者らの報告^{4).7)}と同様に3成分から構成され た。g値が約2.00 に位置する有機フリーラジカル由 来の1本線信号,1本線信号の近傍に観測されたマ ンガンイオン超微細構造に由来する6本線信号,g 値が約4の位置に観測された鉄イオン由来の微小な 信号である。有機フリーラジカル由来の1本線は照 射により信号強度が増大した。また,照射試料では 1本線信号の両サイドに,照射セルロース由来 twin peakが観測された。twin peakのhfcは6mTであり, field swept echo で観測された twin peak のhfcと同 値であった。そのため, field swept echo で観測さ れた twin peak は CW-ESR 計測で観測された twin peak と同じ照射セルロース由来の信号と結論した。

3. CW-ESR の逐次飽和挙動と緩和時間

Fig. 3 に有機フリーラジカル由来の1本線信号 の逐次飽和挙動 (Progressive Saturation Behavior; PSB) を示した。照射量の増加とともに各試料の 信号強度最大値が増した。

常磁性系に対する連続的なマイクロ波照射での飽 和理論はすでに明らかにされている¹¹⁾。Lund らは, PSB を利用することによりラジカルの緩和時間(T_1 , T_2) を高い精度で求める手法を報告した¹²⁾。Table 1 に Lund の方法によって求めた黒コショウ中のラ

Fig. 2 CW-ESR spectra before and after the γ -irradiation. The horizontal axis in the magnetic field (mT).

Fig. 3 The saturation curve of ESR signals of black pepper at various dose level from 0 to 50 kGy.

ジカルのT₁, T₂を示した。

4. スピン - 格子緩和時間(T₁)

pulse-ESRで計測した黒コショウのT₁は,照射 による変化が小さかった。T₁はスピンと軌道の相 互作用から化学結合に沿ってエネルギーが流れ,ス ピンからエネルギーが失われる過程に依存してい る¹³⁾。照射によるT₁の変化が小さいということは, 放射線による化学結合の切断からラジカルが生成し た後でも,別な結合からエネルギーが流れていく経 路が存在していると考えられる。

CW-ESR から算出した T_1 も, pulse-ESR の結果と 同様に照射による変化が小さかった。これは、PSB の信号強度が最も高い値(閾値)を支えるマイクロ 波強度が、照射によって変化しなかったことに起因 する。閾値を支えるマイクロ波強度は電子スピンの 励起及び緩和が等しい状態にあり、試料のスピンの 状態が最も顕著にスペクトルに現れる。そのため、 Lund の方法¹¹⁾ では閾値を支えるマイクロ波強度を T_1 算出の最重要条件としている。

5. スピン - スピン緩和時間 (T₂)

Pulse-ESR から算出した T₂ は、照射量の増大と 共に増加し、照射依存性が非常に強く表れた。T₂ はスピン間の相互作用を反映している¹⁴⁾。照射量 に応じて T₂ が長くなることは、照射による化学結 合の切断によってラジカル間の距離が離れ、相互作 用が弱くなったためと推察される。

CW-ESR による T₂ 算出結果も pulse-ESR の計測 結果と同様に照射処理量と共に増加する傾向にあっ た。Lund の方法¹¹⁾ では線幅をT² 算出の要件としている。そのため,照射量の増大に伴う信号線幅の変化がT² に反映されたと考えられる。

まとめ

これまで報告されたことのない pulse-ESR による 照射黒コショウ中のラジカルの field swept echo 観 測に成功した。 T_1 の値は照射による変化が小さかっ た。 T_2 の値は照射によって増大した。pulse-ESR と CW-ESR から求めた T_1 , T_2 は,同様の傾向を示す ことがわかった。pulse-ESR の計測から得られる T_2 の値は照射依存性が非常に強かった。今後,低線量 照射試料での検討を行うことで,新たな照射検知に 応用できる可能性を示すことができた。

謝 辞

本研究の一部は,文部科学省原子力基礎基盤戦略 研究イニシアティブにより実施された「実用化が予 想される食品への放射線利用に関する基礎研究」の 成果である。

参考文献

- EN1786. Foodstuffs-detection of irradiated food containing bone-method by ESR spectroscopy. European Committee for standardization (1997).
- EN1787. Foodstuffs-detection of irradiated food containing cellulose-method by ESR spectroscopy. European Committee for standardization (2000).
- EN13708. Foodstuffs-detection of irradiated food containing sugar-method by ESR spectroscopy. European Committee for standardization (2002).
- 4)浜谷成樹ほか.電子スピン共鳴分光法による放射線照射黒胡椒中の有機フリーラジカルの加熱時における減衰挙動の研究. Radioisotopes. 52,

p.367-373 (2003).

- Ukai, Mitsuko; Shimoyama, Yohei. Free radicals in irradiated pepper: an electron spin resonance study. *Applied Magnetic Resonance*. 24, p.1-11 (2003).
- 6) Ukai, Mitsuko; Shimoyama, Yohei. An electron spin resonance study of radical decay in γ-ray irradiated pepper by thermal treatment. *Applied Magnetic Resonance*. **25**, p.95-103 (2003).
- 7) Ukai, Mitsuko; Shimoyama, Yohei. Decay of organic free radicals in γ-ray irradiated pepper during thermal treatment as detected by electron spin resonance spectroscopy. *Radiation Physics and Chemistry*. **71**, p.177-180 (2004).
- 8)石津和彦.実用ESR入門-生命科学へのアプ ローチー.東京,講談社, p.19-24 (1981).
- Schweiger, A.; Jeschke, G. Principles of pulse electron paramagnetic resonance. New York, Oxford Univ. Pr. on Demand, p.1-8 (2001).
- 10) 亀谷宏美ほか、照射マンゴー中に誘導される ラジカルの緩和時間と線量依存性. Radioisotopes. 59, p.607-614 (2010).
- Swartz, M. H. et al. Biological applications of electron spin resonance. New York, John Wiley and Sons Inc., p.82-85 (1972).
- Lund, A. Relaxation time determination from continuous-wave microwave saturation of EPR spectra. *Radiation Research*. 172, p.753-760 (2009).
- 石津和彦. 実用 ESR 入門-生命科学へのアプ ローチー. 東京, 講談社, p.302 (1981).
- Alger, R. S. Electron paramagnetic resonance: technique and applications. John Wiley and Sons, New York, p.508 (1968).

(2012年7月26日受理)