ニホンカモシカ(Capricornis crispus)の骨格に関する研究

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>誌名</td>
<td>信州大学農学部紀要</td>
</tr>
<tr>
<td>ISSN</td>
<td>05830621</td>
</tr>
<tr>
<td>著者</td>
<td>松尾, 信一/AFP下, 芳臣/AFP大島, 浩二</td>
</tr>
<tr>
<td>巻/号</td>
<td>20巻2号</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 173-192</td>
</tr>
<tr>
<td>発行年月</td>
<td>1983年12月</td>
</tr>
</tbody>
</table>
ニホンカモシカ（Capricornis crispus）
の骨格に関する研究

I 前肢骨について

松尾信一・森下芳臣・大島浩二
信州大学農学部 家畜生体機構学研究室

緒言

文化庁の特別天然記念物ニホンカモシカの保護管理に関する調査研究の一部として，当研究室において，昭和56年1－3月（昭和55年度）と昭和57年11月－昭和58年2月（昭和57年度）に長野県下伊那地方，上伊那地方および木曽地方で捕獲された野生のニホンカモシカ（Capricornis crispus）の剖検を行なった。

今回は，上記のニホンカモシカの中で骨格標本を作成したものの前肢骨について，調査研究を行なった結果を報告する。なお，後肢骨，頭蓋骨，椎骨等についても今後，順次報告する予定である。

材料および方法

当研究室で剖検した幼齢（7－9か月）から老齢（年齢不明）に至るもの，41頭について骨格標本を作成した。それらは Table. 1 に示してある。ニホンカモシカの年齢については，松尾・大島6）（1983）による推定法を用いた。また，成体については，切歯の摩耗状態によって区分した。

骨の計測は，ノギスと物差を使用し，斎藤6）（1963）による犬科動物骨格計測法を基準として行なった。また，骨端と骨幹の骨化についても調査を行なった。なお，Figs. 1-19 に示したニホンカモシカの前肢骨は，56SE02 の個体を用いた。

結果および考察

ニホンカモシカ（以下カモシカとする）の前肢骨は，肩甲骨，上腕骨，橈骨，尺骨，手根

1983年9月30日受付
Table 1. Data obtained from Japanese serows.

<table>
<thead>
<tr>
<th>Serows</th>
<th>Sex</th>
<th>Body weight (kg)</th>
<th>Age and length of incisor (cm)</th>
<th>Pregnancy*</th>
<th>Captured spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>56SE 13</td>
<td>F</td>
<td>18.5</td>
<td></td>
<td>x</td>
<td>Iida</td>
</tr>
<tr>
<td>56SE 41</td>
<td>F</td>
<td>16.8</td>
<td></td>
<td>x</td>
<td>Hiraya</td>
</tr>
<tr>
<td>56SE 07</td>
<td>M</td>
<td>17.0</td>
<td></td>
<td></td>
<td>Takamori</td>
</tr>
<tr>
<td>56SE 28</td>
<td>F</td>
<td>25.0</td>
<td></td>
<td>x</td>
<td>Kamisato</td>
</tr>
<tr>
<td>56SE 33</td>
<td>F</td>
<td>21.0</td>
<td>7-9mo.</td>
<td>x</td>
<td>Iida</td>
</tr>
<tr>
<td>56SE 52</td>
<td>F</td>
<td>15.0</td>
<td></td>
<td>x</td>
<td>Achi</td>
</tr>
<tr>
<td>56SE 37</td>
<td>M</td>
<td>20.6</td>
<td></td>
<td></td>
<td>Seinaiji</td>
</tr>
<tr>
<td>56SE 05</td>
<td>F</td>
<td>16.2</td>
<td></td>
<td>x</td>
<td>Iijima</td>
</tr>
<tr>
<td>57SE 07</td>
<td>F</td>
<td>21.2</td>
<td></td>
<td>x</td>
<td>Iijima</td>
</tr>
<tr>
<td>56SE 18</td>
<td>M</td>
<td>31.0</td>
<td></td>
<td></td>
<td>Seinaiji</td>
</tr>
<tr>
<td>57SE 09</td>
<td>F</td>
<td>35.1</td>
<td>1yr. 7-9mo.</td>
<td>x</td>
<td>Iijima</td>
</tr>
<tr>
<td>57SE 12</td>
<td>F</td>
<td>38.6</td>
<td></td>
<td></td>
<td>Ina</td>
</tr>
<tr>
<td>57SE 33</td>
<td>M</td>
<td>35.5</td>
<td></td>
<td></td>
<td>Nag iso</td>
</tr>
<tr>
<td>56SE 47</td>
<td>F</td>
<td>25.3</td>
<td></td>
<td></td>
<td>Seinaiji</td>
</tr>
<tr>
<td>57SE 45</td>
<td>M</td>
<td>25.0</td>
<td>2yr. 7-9mo.</td>
<td></td>
<td>Ina</td>
</tr>
<tr>
<td>57SE 02</td>
<td>M</td>
<td>33.5</td>
<td></td>
<td></td>
<td>Achi</td>
</tr>
<tr>
<td>57SE 27</td>
<td>M</td>
<td>32.0</td>
<td></td>
<td></td>
<td>Ina</td>
</tr>
<tr>
<td>56SE 51</td>
<td>M</td>
<td>25.0</td>
<td></td>
<td></td>
<td>Kamisato</td>
</tr>
<tr>
<td>56SE 29</td>
<td>F</td>
<td>35.0</td>
<td>3yr. 7-9mo.</td>
<td></td>
<td>Ina</td>
</tr>
<tr>
<td>57SE 11</td>
<td>F</td>
<td>41.7</td>
<td></td>
<td></td>
<td>Iida</td>
</tr>
<tr>
<td>56SE 35</td>
<td>M</td>
<td>32.0</td>
<td></td>
<td></td>
<td>Iida</td>
</tr>
<tr>
<td>56SE 11</td>
<td>M</td>
<td>35.5</td>
<td>1.05</td>
<td></td>
<td>Iida</td>
</tr>
<tr>
<td>56SE 12</td>
<td>F</td>
<td>35.3</td>
<td>1.05</td>
<td></td>
<td>Nag iso</td>
</tr>
<tr>
<td>56SE 46</td>
<td>M</td>
<td>28.9</td>
<td>1.05</td>
<td></td>
<td>Otaki</td>
</tr>
<tr>
<td>56SE 48</td>
<td>M</td>
<td>33.2</td>
<td>1.05</td>
<td></td>
<td>Takamori</td>
</tr>
<tr>
<td>56SE 06</td>
<td>M</td>
<td>34.0</td>
<td>1.00</td>
<td></td>
<td>Otaki</td>
</tr>
<tr>
<td>56SE 50</td>
<td>F</td>
<td>36.9</td>
<td>1.00</td>
<td></td>
<td>Iida</td>
</tr>
<tr>
<td>56SE 01</td>
<td>M</td>
<td>41.0</td>
<td>0.95</td>
<td></td>
<td>Kamisato</td>
</tr>
<tr>
<td>56SE 19</td>
<td>F</td>
<td>44.0</td>
<td>0.90</td>
<td></td>
<td>Takamori</td>
</tr>
<tr>
<td>56SE 04</td>
<td>M</td>
<td>—</td>
<td>0.80</td>
<td></td>
<td>Iida</td>
</tr>
<tr>
<td>56SE 05</td>
<td>M</td>
<td>31.2</td>
<td>0.80 (cm)</td>
<td></td>
<td>Iida</td>
</tr>
<tr>
<td>56SE 22</td>
<td>M</td>
<td>38.9</td>
<td>0.80</td>
<td></td>
<td>Iida</td>
</tr>
<tr>
<td>56SE 24</td>
<td>M</td>
<td>34.5</td>
<td>0.75</td>
<td></td>
<td>Otaki</td>
</tr>
<tr>
<td>56SE 49</td>
<td>F</td>
<td>36.2</td>
<td>0.75</td>
<td></td>
<td>Takamori</td>
</tr>
<tr>
<td>56SE 02</td>
<td>M</td>
<td>31.3</td>
<td>0.70</td>
<td></td>
<td>Iida</td>
</tr>
<tr>
<td>56SE 10</td>
<td>M</td>
<td>32.3</td>
<td>0.70</td>
<td></td>
<td>Iida</td>
</tr>
<tr>
<td>56SE 03</td>
<td>F</td>
<td>45.0</td>
<td>0.65</td>
<td></td>
<td>Takamori</td>
</tr>
<tr>
<td>56SE 25</td>
<td>M</td>
<td>33.3</td>
<td>0.55</td>
<td></td>
<td>Iida</td>
</tr>
<tr>
<td>56SE 30</td>
<td>M</td>
<td>31.2</td>
<td>0.55</td>
<td></td>
<td>Kamisato</td>
</tr>
<tr>
<td>56SE 40</td>
<td>F</td>
<td>32.1</td>
<td>0.45</td>
<td></td>
<td>Hiraya</td>
</tr>
</tbody>
</table>

* x: non-pregnancy, ○: pregnancy
Table 2. Measurements of thoracic limb in adult Japanese serows (mm)

<table>
<thead>
<tr>
<th>Bone</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean±S.E.</td>
<td>Mean±S.E.</td>
</tr>
<tr>
<td>Scapula</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Length</td>
<td>164.00±1.22(12)</td>
<td>166.00±1.21 (6)</td>
</tr>
<tr>
<td>2. Width of proximal end</td>
<td>89.84±1.21(12)</td>
<td>86.25±1.35 (6)</td>
</tr>
<tr>
<td>3. Smallest of neck of scapula</td>
<td>21.36±0.22(12)</td>
<td>20.60±0.39 (6)</td>
</tr>
<tr>
<td>4. Width of distal end</td>
<td>30.98±0.43(12)</td>
<td>30.18±0.39 (6)</td>
</tr>
<tr>
<td>5. Greatest width of spine</td>
<td>26.64±0.83(12)</td>
<td>27.85±0.89 (6)</td>
</tr>
<tr>
<td>Humerus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Length</td>
<td>197.40±1.23(14)</td>
<td>196.70±2.33 (5)</td>
</tr>
<tr>
<td>2. Greatest anterioposterior diameter of proximal end</td>
<td>46.57±0.36(14)</td>
<td>46.12±0.93 (5)</td>
</tr>
<tr>
<td>3. Greatest width of proximal end</td>
<td>41.54±0.59(14)</td>
<td>40.04±0.60 (5)</td>
</tr>
<tr>
<td>4. Anterioposterior diameter of body</td>
<td>25.41±0.32(14)</td>
<td>25.84±0.85 (5)</td>
</tr>
<tr>
<td>5. Smallest transverse of body</td>
<td>17.14±0.13(14)</td>
<td>17.04±0.35 (5)</td>
</tr>
<tr>
<td>6. Anterioposterior diameter of middle part of body</td>
<td>20.46±0.21(14)</td>
<td>20.70±0.39 (5)</td>
</tr>
<tr>
<td>7. Greatest width of distal end</td>
<td>36.61±0.95(14)</td>
<td>37.30±0.64 (5)</td>
</tr>
<tr>
<td>Radius</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Length</td>
<td>181.54±1.01(14)</td>
<td>180.92±2.96 (5)</td>
</tr>
<tr>
<td>2. Greatest width of proximal end</td>
<td>34.94±0.30(14)</td>
<td>33.46±0.68 (5)</td>
</tr>
<tr>
<td>3. Greatest anterioposterior diameter of proximal end</td>
<td>17.66±0.11(14)</td>
<td>16.88±0.57 (5)</td>
</tr>
<tr>
<td>4. Transverse of body center</td>
<td>19.90±0.14(14)</td>
<td>19.88±0.47 (5)</td>
</tr>
<tr>
<td>5. Anterioposterior diameter of middle part of body</td>
<td>13.56±0.16(14)</td>
<td>13.26±0.29 (5)</td>
</tr>
<tr>
<td>6. Greatest width of distal end</td>
<td>33.08±0.39(14)</td>
<td>33.04±0.55 (5)</td>
</tr>
<tr>
<td>7. Anterioposterior diameter of distal end</td>
<td>22.16±0.31(14)</td>
<td>21.46±0.67 (5)</td>
</tr>
<tr>
<td>Ulna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Length</td>
<td>226.08±1.55(13)</td>
<td>226.98±3.42 (4)</td>
</tr>
<tr>
<td>2. Anterioposterior diameter of olecranon</td>
<td>29.83±0.25(14)</td>
<td>30.22±0.44 (5)</td>
</tr>
<tr>
<td>3. Anterioposterior diameter of middle part of body</td>
<td>11.19±0.28(14)</td>
<td>11.70±0.57 (5)</td>
</tr>
<tr>
<td>Metacarpal bone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Length</td>
<td>131.96±0.96(13)</td>
<td>130.60±2.21 (5)</td>
</tr>
</tbody>
</table>

() : case

骨，中手骨，指骨および種子骨から成り，さらに副蹄内に2個の小骨片が存在していた。
カモシカの前肢骨の中で，肩甲骨，上腕骨，掌骨，尺骨および中手骨の各骨の計測値の結果を Table. 2 に示した。なお，計測に当たっては，切歯がすべて斬歯した成例を用いた。

1 肩甲骨 Scapula

Figs. 1-3 に示したように，鋸筋面，肩甲下窩，肩甲棘，肩甲棘結節，棘上窩，棘下窩，肩峰，背縁，後縁，肩甲切痕，後角，前角，頜筋窩，肩甲頸，頜筋上結節および鳥口突起の各部位を確認した。

肩甲棘 Spina scapulae (Figs. 1, 3)

カモシカの肩甲棘は，直立しているものが多くみられ，ヤギでも直立しているが，全体的
に前方に傾いているものが多かった。一方、ウシやヒッジの肩甲棘は、中央ではやや後方に傾斜しているが、尾端では前方に傾斜していた。すなわち、カモシカやヤギの肩甲棘は、ヒッジやウシに比べて傾斜の程度が弱い。

肩甲棘結節 Tuber spinae scapulae (Fig. 1)
カモシカの肩甲棘結節は、ウシやヒッジのように明らかではないが、僅かがら脊面が認められ、ヤギのものよりも発達していた。

肩峰 Acromion (Fig. 3)
反芻動物の特徴の一つである肩峰は、カモシカでは、ウシやヤギのように絞り状の断面ではなく、切溝状の断面をしていた。

肩甲頭 Collum scapulae (Figs. 1, 2)
カモシカの肩甲頭の幅は、ヤギやヒッジに比べてかかなり狭かった。

関節窩 Cavitas glenoidalis (Fig. 3)
カモシカやヒッジの関節窩は、楕円形に近く、ヤギやウシでは、ほぼ円形であった。

窩切痕 Incisula glenoidalis (Fig. 3)
カモシカ、ヒッジ、ウシの窩切痕は、認められずが、ヤギでは、浅いながらも多くの個体で存在していた。

関節上結節 Tuberculum supraglenoidale (Figs. 1, 3)
カモシカ、ヤギ、ヒッジの関節上結節は、粗面状であり、ウシでは丸味を帯びた粗い小隆起状の結節となっていた。しかも、カモシカの関節上結節は、ヤギやヒッジのものに比べてかなり小形であった。

鳥口突起 Processus coracoideus (Fig. 3)
カモシカ、ヤギ、ヒッジの鳥口突起は、銳角的に突出しており、ウシでは、小さく丸味を帯びた突起であった。

栄養孔 Foramen nutricium
カモシカの栄養孔は、後緑下方1/3.5一1/3にあり、ヤギやヒッジでは、後緑下方1/4一1/3.5に存在していた。すなわち、カモシカの栄養孔の位置は、ヤギやヒッジのものよりも

Table.3. Anatomical epiphyseal closure times for thoracic appendage of Japanese serows.

<table>
<thead>
<tr>
<th>Bone</th>
<th>Proximal</th>
<th>Distal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scapula</td>
<td>6-8mo.</td>
<td>2yr. 7-8mo.</td>
</tr>
<tr>
<td>Humerus</td>
<td>6-8mo.</td>
<td>2yr. 7-8mo.</td>
</tr>
<tr>
<td>Radius</td>
<td>6-8mo.</td>
<td>2yr. 7-8mo.</td>
</tr>
<tr>
<td>Ulna</td>
<td>6-8mo.</td>
<td>2yr. 7-8mo.</td>
</tr>
<tr>
<td>Metacarpal III</td>
<td>3yr. 4-9mo.</td>
<td>2yr. 7-8mo.</td>
</tr>
<tr>
<td>Phalanx</td>
<td>1yr. 6-8mo.</td>
<td></td>
</tr>
</tbody>
</table>
やや上方に存在していた。一方、ウシでは、後縁下方1/3に存在していた。
肩甲骨の遊離縁は、カモンカでは、前縁、後縁とも、ヤギ、ヒッジ、ウシに比べて丸味が
少なく直線的であった。また、カモンカやヤギの棘下窩の骨の厚さは、かなり薄かった。

骨結合 Synostosis
カモンカの関節上結節の骨化は、当歳の初期に完了するものと考えられる（Table.3）。

2 上腕骨 Humerus
Figs. 4–7 に示したように、上腕骨頭、上腕骨頭、大結節前部・後部、大結節後部、小結節、
結節間溝、棘下窩、小円筋粗面、大円筋粗面、上腕骨体、前側、内側面、後面、外側面、上
腕骨頭、三角筋粗面、上腕筋溝、大円筋粗面、上腕骨頭、上腕骨頭、上腕骨幹、肘頭窩、
鈖突窩、桃骨窩、内側上頸および外側上頸歯の各部位を確認した。

大結節 Tuberculum majus (Figs. 4, 6)
カモンカ、ヤギ、ヒッジでは、大結節前部と大結節後部に分かれており、前部は上腕骨頭
より高く、よく発達しているが、後部は低くて上腕骨頭と同じ高さであった。ウシの大結節
は、前部、後部とも大で高くよく発達していた。大結節は、カモンカとヤギは類似の形態を
しているが、前部から後部へ連なる稜線の傾斜の程度が、カモンカの方がヤギよりもゆるや
かであった。

棘下面 Facies m. infraspinati (Fig. 6)
カモンカ、ヤギ、ヒッジの棘下窩は、大結節後部の大結節疎の外側下方に存在する円形
の粗面であるが、ウシでは、大結節前部の大結節深の外側下方に存在していた。

小円筋粗面 Tuberositas teres minor (Fig. 6)
カモンカやヤギの小円筋粗面は、わずかな小隆起として認められるにすぎないが、ウシで
は、ほぼ円形でコブ状に突出していた。カモンカの小円筋粗面の位置は、棘下窩面の下方に
存在し、ヤギでは、やや上腕骨頭よりに存在していた。

三角筋粗面 Tuberositas deltoidea (Figs. 4, 6)
カモンカの三角筋粗面は、ヤギよりも鮮明で、鋭角的に隆起した結節であり、ヒッジより
も大きくなっていた。一方、ウシでは粗造な結節であった。カモンカの三角筋粗面の位置は、
ヤギのものよりも上腕骨の近位端よりに存在していた。

上腕骨頭 Collum humeri (Fig. 7)
カモンカ、ヤギ、ヒッジの上腕骨頭の窪みの程度は、ウシのものよりもやや深い状態であ
った。

大円筋粗面 Tuberositas teres major (Fig. 7)
カモンカの大円筋粗面は、隆起状ではないが、はっきりした粗面であり、骨幹内側近位
1/3に存在していた。ヤギでは、見分けにくい粗面であり、ヒッジでは、小さく丸味を帯び
た隆起であった。ウシでは、卵円形でコブ状の低い隆起で、骨幹内側中央部に存在してい
た。

上腕骨滑車 Trochlea humeri (Fig. 4)
カモンカ、ヤギ、ウシの上腕骨滑車は、上腕骨頭 (Capitulum humeri) よりも大きい
が、ヒッジでは、小頭も滑車と同程度の大きさであった。

外側上頸歯 Crista epicondylis lateralis (Fig. 4)
カモノサカの外側上頸窪は、厚さが比較的薄いが、鮮明であった。ヤギのものは、カモノサカ
のものよりも厚く、ヒツジやウシのものは、かなり厚くなっていた。

肘頭窪 Fossa olecrani (Fig. 5)
カモノサカの肘頭窪は、ヤギやヒツジのものよりもやや浅かった。

鈍突窪 Fossa coronoidea (Fig. 4)
カモノサカでは、鈍突窪と檻骨窪 (Fossa radialis) を分けることも可能であった。鈍突窪と
檻骨窪の形態は、カモノサカ、ヤギ、ヒツジで僅かながら異なっていた。一例ではあるが、カ
モノサカで上腕骨に滑車上孔 (For. supratrochleare) が認められた。

栄養孔
カモノサカの上腕骨の栄養孔は、ウシと同様に骨幹後面遠位 1/3 に存在し、ヤギやヒツジで
は、骨幹後面やや外側遠位 1/3 に存在していた。
上腕骨体は、カモノサカでは、ヤギに比べて細く長かった。一方、ヒツジやウシでは、極め
て太く短かった (Figs. 4, 5)。

骨結合
カモノサカの上腕骨の骨化は、近位端では、2 年 7〜8 カ月頃に、また遠位端では、当歳の
初期に完了するものと考えられる (Table. 3)。

3 前腕骨 Ossa antibrachii
Figs. 8-11 に示したように、椴骨では、椴骨頭、椴骨頭窪、椴骨頸、椴骨粗面、椴骨体、
前後、後面、内側縁、外側縁、横縁、椴骨滑車、手骨関節面、内側茎状突起。また、尺骨で
は、肘頭、肘頭隆起、肘突起、滑車切痕、内側鈍状突起、外側鈍状突起、尺骨体、外側面、
内側面、後縁、手骨関節面、茎状突起および前腕骨間隙の各部位を確認した。

近位前腕骨間隙の腔所は、カモノサカでは、ヤギやヒツジに比べて、狭く細長い場合が多か
った。遠位前腕骨間隙の腔所は、カモノサカ、ヤギ、ヒツジともに同じように極めて細長かっ
た。

① 椴骨 Radius
椴骨近位端 (Fig. 11)
椴骨頭の内側面の前位に、ウシ、ヤギやヒツジでは、小さな関節面（椴骨粗面の直上）が
存在していたが、カモノサカでは認められなかった。

椴骨体 Corpus radii (Figs. 8-10)
カモノサカの椴骨体は、ウシに類似して、中央部が角柱であるが、ヤギやヒツジでは、前面
で丸味をもち、後面で平坦になっていた。

栄養孔
カモノサカの椴骨の栄養孔は、骨幹後面外側近位 1/3 に存在し、ヤギ、ヒツジ、ウシでは、
骨幹後面外側近位 1/4 に存在していた。

ヤギの椴骨の遠位端の太さは、調査したものの 1/4 の例数で、骨体よりも著しく大きい傾
向のものを認めた。一方、カモノサカでは、そのような傾向は認められなかった。

骨結合
カモノサカの椴骨の骨化は、近位端では当歳の初期に、また遠位端は、2 年 7〜8 カ月頃に
完了すると考えられる (Table. 3)。
② 尺骨 Ulna

肘頭 Olecranon (Fig. 8)
反芻動物の肘頭隆起は、前部と後部に分けられ、後部の方が厚かった。カモンカでは、肘頭隆起は、前部と後部が同じ高さであり、ヤギでは、後部が前部よりもやや高く、ヒツジでは、後部から前部への稜線の傾斜は急であった。

鉤状突起 Proc. coronoides (Fig. 11)
カモンカやヤギでは、内側鉤状突起の上腕骨滑車との関節面の方が、外側鉤状突起の関節面より大きく、その差は、カモンカの方がヤギよりも大きかった。ヒツジでは、内側及び外側の鉤状突起の関節面は、同じ大きさであった。

尺骨体 Corpus ulnae (Figs. 8, 9)
カモンカの尺骨体は、近位 1/2 までは、ほぼ垂直に下降するが、遠位 1/2 では、ゆるやかに彎曲していた。一方、ヤギでは、全体的にゆるやかに彎曲しており、ヒツジやウシでは、大きく彎曲していた。また、カモンカやヒツジの尺骨体の近位 1/2 までの幅は、ヤギよりも広かった。

骨結合
カモンカの尺骨の骨化は、近位端では 2 年 7 〜 8 ヶ月頃に、遠位端では 3 年 4 〜 9 ヶ月頃に完了するものと考えられる (Table. 3)。

尺骨が焼骨とゆ合する部位は、カモンカ、ヤギ、ヒツジでは、焼骨後面外側より、やや内側の部位であった (Fig. 10)。一方、ウシでは、焼骨後面外側であった。また、カモンカ、ヒツジ、ウシの尺骨体は、近位から遠位までの全長にわたり明確に焼骨と区別できた。一方、ヤギの尺骨体は、中央部で焼骨と密にゆ合して、両者の区別が不明瞭であった。カモンカのゆ合状態は、成体でも、焼骨と尺骨が完全にゆ合していない状態のものが多くみられ、さらに、ゆ合する場合は、遠位端の方から先に始まった。

4 手根骨 Ossa carpi (Figs. 12, 13)
Figs. 12−13 で示したように、側腕手根骨、中間手根骨、尺側手根骨、副手根骨、第四手根骨、第二・三手根骨の6個の手根骨を確認した。
カモンカの中根骨（副手根骨を除く）は、ウシのものに類似して小形であった。しかし、ウシの副手根骨が塊状であるのに対し、カモンカの副手根骨は、彎曲した不正四角形で、外側面は多少隆起し、内側面は陥凹していた。ヤギやヒツジの副手根骨もカモンカのものに類似していた。

5 中手骨 Ossa metacarpalia
カモンカの中手骨は、反芻類家畜と同様に、第三と第四の中手骨がゆ合していた。
Figs. 14−15 で示したように、第三・四中手骨では、底、関節面、体、背側面、第三中手骨粗面、掌側面、内側縫、外側縫、頭、背側縫溝、掌側縫溝、近位中手管、遠位中手管、滑車間切痕の各部位および第五中手骨を確認した。
背側縫溝 Sulcus longitudinalis dorsalis (Fig. 14)
カモンカやヤギの背側縫溝は、第三と第四中手骨のゆ合を示す非常に浅くて細い溝として認められる程度であり、一方、ウシでは、カモンカのものより深い溝であった。
掌側縫溝 Sulcus longitudinalis palmaris (Fig. 15)
カモシカやヤギの掌側縦溝は、第三と第四中手骨のゆ合が溝状ではなく、線状として認められるにすぎない状態であり、一方、ウシでは、浅く細い溝として認められた。

滑車間切痕 Inc. intertrochlearis (Figs. 14, 15)

滑車の全幅に対する滑車間切痕の割合は、カモシカ、ヤギ、ウシの順に小さくなっていた。

第五中手骨 Os metacarpale V (Figs. 14, 15)

カモシカの第五中手骨は、非常に小形であり、明確な関節面は認められないが、小骨体として残っている個体が、調査したもの約1/3にみられた。GETTY1(1975)やMAY5(1970)によると、ヤギ、ヒツジ、ウシでも、第五中手骨は存在すると報告している。

骨結合

カモシカの中手骨の骨化は、遠位端では、2年7〜8ヶ月に完了するものと考えられる（Table.3）。

6 指骨 Ossa digitorum manus (Figs. 16-19)

カモシカの指骨は、第一、第二、第三の指骨が存在していた。Figs. 16-19 に示したように、基節骨（第一指骨）では、基節骨底、関節窪、基節骨体、基節骨頭、中節骨（第二指骨）では、中節骨底、関節窪、伸筋突起、中節骨体、中節骨頭、末節骨（第三指骨）では、壁側面、関節面、床側面、冠線、伸筋突起、軸側面、背線、矢、床線の各部位および掌側前肢に近位種子骨（4個）、遠位種子骨（2個）と2個の副腕内に各々2個の小骨片（合計4個）を確認した。

カモシカ、ヤギ、ヒツジの指骨は、細長く、ウシでは、太くて短かった。

骨結合

カモシカの第一指骨と第二指骨の近位端の骨化は、ともに、1年6〜8ヶ月に完了するものと考えられる（Table.3）。

要　約

長野県伊那および木曽地方のニホンカモシカ41頭（雄22頭、雌19頭）の前肢骨格について、解剖学的に調査研究を行なった。さらに、家畜のヤギ、ヒツジ、ウシの前肢骨との比較も行なった。骨の名称は、家畜解剖学用語（1981）に準拠した。

1. カモシカの前肢骨は、肩甲骨、上腕骨、様骨、尺骨、手根骨、中手骨、指骨、種子骨、および副腕内の2個の小骨片から成り、それらの骨の各部位を確認し、図譜を作成した。

2. カモシカの前肢骨格は、反芻動物の一般的な特徴を備え、概観的には、ヤギやヒツジの骨格に類似していた。また、ウシとは、骨格の大きさの差で区別できた。

3. カモシカの肩甲骨では、次のに部位でヤギやヒツジと区別できた。肩甲棘の起立の状態、肩甲腔窪接、肩峰、肩甲頭、関節窪、窪切窪、関節上結節、鳥口突起、栄養孔の位置および遊離縁の形態。

4. カモシカの上腕骨では、次の部位でヤギやヒツジと区別できた。大結節、小円筋粗面、三角筋粗面、大円筋粗面、外側上頸窪、肘窩窪、竇突窪と様骨窪および栄養孔の位置。

5. カモシカの前腕骨では、次の部位でヤギやヒツジと区別できた。遠位前腕骨間隙、様骨体の形態、様骨の栄養孔の位置、尺骨の肘頭、竇突起、尺骨体の幅および様骨と尺骨のゆ合の状態。
6. カモシカの手根骨は、ウシ、ヤギ、ヒツジのものに似ていた。しかし、カモシカの副手根骨は、ウシと異なり、ヤギやヒツジに似ていた。
7. カモシカの中手骨の中で、第五中手骨は、調査したもののは約1/3のもので存在していた。
8. カモシカの指骨は、ヤギやヒツジのものに似せて細長かった。一方、ウシの中骨は、太くて短かった。

引用文献

3) 加藤喜太郎、1979. 家畜比較解剖図説 第二次増訂改版. 上巻：62-75. 養賢堂, 東京.
PLATE 1

Right scapula of Japanese serow. カモンカの肩甲骨（右側）

Fig. 1. Lateral view. $\times \frac{1}{2}$ 外側面
Fig. 2. Medial view. $\times \frac{1}{2}$ 内側面
Fig. 3. Ventral view. $\times 1.4$ 腹側面

SCAPULA

1. Facies serrata 1. 鍼筋面
2. Fossa subscapularis 2. 肩甲下窩
3. Spina scapulae 3. 肩甲棘
4. Tuber spinae scapulae 4. 肩甲棘結節
5. Fossa supraspinata 5. 棘上窩
6. Fossa infraspinata 6. 棘下窩
7. Acromion 7. 肩峰
8. Margo dorsalis 8. 背縁
9. Margo caudalis 9. 後縁
10. Margo cranialis 10. 前縁
11. Incisura scapulae 11. 肩甲切端
12. Angulus caudalis 12. 後角
13. Angulus cranialis 13. 前角
14. Cavitas glenoidalis 14. 関節窩
15. Collum scapulae 15. 肩甲頸
16. Tuberculum supraglenoidale 16. 関節上結節
17. Processus coracoideus 17. 鳥口突起
PLATE 2

Right humerus of Japanese serow. カモノカの上腕骨（右側）

Fig. 4. Craniolateral view. $\times \frac{1}{2}$ 前外側面
Fig. 5. Caudal view. $\times \frac{1}{2}$ 後面
Fig. 6. Proximal craniolateral view. $\times 1$ 近位前外側面
Fig. 7. Proximal cranial view. $\times 1$ 近位前面

HUMERUS

1. Caput humeri 1. 上腕骨頭
2. Collum humeri 2. 上腕骨頸
3. Tuberculum majus 3. 大結節
 Pars cranialis 前部
4. Tuberculum majus 4. 大結節
 Pars caudalis 後部
5. Crista tuberculi majoris 5. 大結節稜
6. Tuberculum minus 6. 小結節
7. Sulcus intertubercularis 7. 結節間溝
8. Facies m. infraspinati 8. 椎下節面
9. Tuberositas teres minor 9. 小円筋粗面
10. Linea m. tricipitis 10. 三角筋線
11. Corpus humeri 11. 上腕骨体
12. Facies cranialis 12. 前面
13. Facies lateralis 13. 外側面
14. Facies caudalis 14. 後面
15. Facies medialis 15. 内側面
16. Crista humeri 16. 上腕骨稜
17. Tuberositas deltoidea 17. 三角筋粗面
18. Sulcus m. brachialis 18. 上腕筋溝
19. Tuberositas teres major 19. 大円筋粗面
20. Condylus humeri 20. 上腕骨穂
21. Capitulum humeri 21. 上腕骨小頭
22. Trochlea humeri 22. 上腕骨滑車
23. Fossa olecrani 23. 肘頭窩
24. Fossa coronoidea 24. 勻突窩
25. Fossa radialis 25. 槍骨窩
26. Epicondylus medialis 26. 内側上穂
27. Epicondylus lateralis 27. 外側上穂
28. Crista epicondyl lateralis 28. 外側上頸稜
PLATE 3

Right radius and ulna of Japanese serow. カモンシカの橈骨と尺骨（右側）

- **Fig. 8.** Lateral view. × ca. $\frac{1}{2}$ 外側面
- **Fig. 9.** Medial view. × ca. $\frac{1}{2}$ 内側面
- **Fig. 10.** Caudal view. × ca. $\frac{1}{2}$ 後面
- **Fig. 11.** Proximal cranial view. × ca. $\frac{2}{3}$ 近位前面

1. RADIUS	1. 桫	骨
2. Caput radii	2. 桫 骨 頭	
3. Fovea capitis radii	3. 桫 骨 頭 窩	
4. Collum radii	4. 桫 骨 頭	
5. Tuberositas radii	5. 桫 骨 粗 面	
6. Corpus radii	6. 桫 骨 体	
7. Facies cranialis	7. 前 面	
8. Facies caudalis	8. 後 面	
9. Margo medialis	9. 内 側 縁	
10. Margo lateralis	10. 外 側 縁	
11. Crista transversa	11. 橫 縱	
12. Trochlea radii	12. 桫 骨 滑 車	
13. Facies articularis carpea	13. 手 根 関 節 面	
14. Processus styloides medialis	14. 内 側 花 状 突 起	
15. ULNA	15. 尺 骨	
16. Olecranon	16. 肘 頭	
17. Tuber olecrani	17. 肘 頭 隆 起	
18. Processus anconeus (anconaeus)	18. 肘 突 起	
19. Incisura trochlearis	19. 滑 車 切 痕	
20. Processus coronoideus medialis	20. 内 側 鈎 状 突 起	
21. Processus coronoideus lateralis	21. 外 側 鈎 状 突 起	
22. Corpus ulnae	22. 尺 骨 体	
23. Facies lateralis	23. 外 側 面	
24. Facies medialis	24. 内 側 面	
25. Margo caudalis	25. 後 縁	
26. Facies articularis carpea	26. 手 根 関 節 面	
27. Processus styloides	27. 花 状 突 起	
28. Spatium interosseum	28. 前 腕 骨 間 空	
PLATE 4

Right carpal bones and metacarpal bones of Japanese serow.

Fig. 12. Carpus and adjacent bones, dorsal view. \times ca. 1 手根骨，背側面
Fig. 13. Carpus and adjacent bones, lateral view. \times ca. 1 手根骨，外側面
Fig. 14. Metacarpal bones, dorsal view. \times ca. $\frac{3}{4}$ 中手骨，背側面
Fig. 15. Metacarpal bones, palmar view. \times ca. $\frac{3}{4}$ 中手骨，掌側面

1. RADIUS 1. 橈 骨
2. ULNA 2. 尺 骨
3. Processus styloideus 3. 虫 状 突 起
OSSA CARPI 4. Os carpi radiale 4. 橈 側 手 根 骨
5. Os carpi intermedium 5. 中 間 手 根 骨
6. Os carpi ulnare 6. 尺 側 手 根 骨
7. Os carpi accessorium 7. 副 手 骨
8. Os carpale IV 8. 第 四 手 骨
9. Os carpale II et III 9. 第二・三手根骨
METACARPUS
10. Os metacarpale III et IV 10. 第三・四中手骨
11. Basis 11. 底
12. Facies articularis 12. 関 節 面
13. Corpus 13. 体
14. Facies dorsalis 14. 背 側 面
15. Tuberositas ossis metacarpalis III 15. 第三中手骨粗面
16. Facies palmaris 16. 掌 側 面
17. Margo medialis 17. 内 側 緑
18. Margo lateralis 18. 外 側 緑
19. Caput 19. 頭
20. Sulcus longitudinalis dorsalis 20. 背 側 縦 溝
21. Sulcus longitudinalis palmaris 21. 掌 側 縦 溝
22. Canalis metacarpi proximalis 22. 近 位 中 手 管
23. Canalis metacarpi distalis 23. 遠 位 中 手 管
24. Incisura intertrochlearis 24. 滑 車 間 切 痕
25. Os metacarpale V 25. 第 五 中 手 骨
PLATE 5

Right bones of distal part of thoracic limb of Japanese serow.
カモシカの前肢遠位部の骨（右側）

Fig. 16. Dorsal view. × 1/2 背側面
Fig. 17. Lateral view. × 1/2 外側面
Fig. 18. Dorsal view. × ca. 1/2 背側面
Fig. 19. Palmar view. × ca. 1/2 掌側面

OSSA DIGITORUM MANUS
指骨
1. Phalanx proximalis 1. 指骨
2. Basis phalangis proximalis 2. 基節骨底
3. Fovea articularis 3. 小関節窩
4. Corpus phalangis proximalis 4. 基節骨体
5. Caput phalangis proximalis 5. 基節骨頭
6. Phalanx media 6. 中関節骨
7. Basis phalangis mediae 7. 中節骨底
8. Fovea articularis 8. 中関節窩
9. Processus extensorius 9. 伸筋突起
10. Corpus phalangis mediae 10. 中節骨体
11. Caput phalangis mediae 11. 中節骨頭
12. Phalanx distalis 12. 末節骨
13. Facies parietalis 13. 壁側面
14. Facies articularis 14. 関節面
15. Facies solearis 15. 床側面
16. Margo coronalis 16. 冠縁
17. Processus extensorius 17. 伸筋突起
18. Facies axialis 18. 軸側面
19. Margo dorsalis 19. 背縁
20. Apex 20. 尖
21. Margo solearis 21. 床縁
22. Ossa sesamoidea proximalia 22. 近位種子骨
23. Os sesamoideum distale 23. 遠位種子骨
24. Nodular vestigial phalanges 24. 副蹠内の小骨片
Studies on the Skeleton of Japanese Serows (*Capricornis crispus*)

I. Bones of the Thoracic Limb

By Shinichi MATSUO, Yoshiomi MORISHITA and Koji OHSHIMA

Laboratory of Functional Anatomy, Fac. Agric., Shinshu Univ.

Summary

The bones of the thoracic limb of forty-one Japanese serows from Ina and Kiso in Nagano Prefecture were anatomically investigated, and compared with those of the goat, sheep and ox. The nomenclature was based on Nomina Anatomica Veterinaria Japonica (1981).

1. The bones of the thoracic limb of the Japanese serow consisted of the scapula, humerus, radius, ulna, carpus, metacarpus, digits, sesamoids and two nodular vestigial phalanges in a dew claw. The various parts of the bones were observed.

2. The bones of the thoracic limb of the Japanese serow had general features of the bones of ruminants and generally resembled those of the goat and sheep, and they could be distinguished from those of the ox with size of each bone.

3. The scapula of the Japanese serow was distinguished from those of the goat and sheep in the following points: spine, tuber spinae, acromion, neck, glenoid cavity, glenoid notch, supraglenoid tubercle, coracoid process, free border and nutrient foramen.

4. The humerus of the Japanese serow was distinguished from those of the goat and sheep in the following points: greater tubercle, teres minor tuberosity, deltoide tuberosity, teres major tuberosity, lateral epicondylar crest, olecranon fossa, coronoid fossa, radial fossa and nutrient foramen.

5. The radius and ulna of the Japanese serow were distinguished from those of the goat and sheep in the following points: proximal interosseous space, body of the radius, nutrient foramen of the radius, olecranon fossa, coronoid process, body of the ulna, and fusion of the radius and ulna.

6. The carpal bones of the Japanese serow resembled those of the goat, sheep and ox. But the accessory carpal bone did not resemble that of the ox, and resembled those of the goat and sheep.

7. The fifth metacarpal bone in the metacarpus of the Japanese serow was found in one third of the all Japanese serows.

8. The digits of the Japanese serow were long and thin, which were similar to those of the goat and sheep, while those of the ox were short and thick.