アワビの好適飼料珪藻Cocconeis scutellum var.parvaの
増殖特性

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>誌名</td>
<td>水産増殖 = The aquiculture</td>
</tr>
<tr>
<td>ISSN</td>
<td>03714217</td>
</tr>
<tr>
<td>著者</td>
<td>河村, 知彦 岡村, 和麿 髙見, 秀輝</td>
</tr>
<tr>
<td>巻/号</td>
<td>46巻4号</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 509-516</td>
</tr>
<tr>
<td>発行年月</td>
<td>1998年12月</td>
</tr>
</tbody>
</table>
The marine benthic diatom, *Cocconeis scutellum* var. *parva* is one of the most suitable diets for post-larval abalone. Growth of this diatom was examined at (1) various combinations of temperature (10, 15, 20, 25°C) and irradiance (12, 46, 78, 112, 135 μE/m²/s) at 33 PSU salinity, and (2) at various salinities (18, 23, 28, 31, 33, 36, 40, 44 PSU) at 20°C with a 78 μE/m²/s and 12:12 LD cycle. These experiments used modified Jørgensen’s medium and ran for 45-55 days. The initial valve length was 16.2 ± 1.2 μm for the temperature and irradiance experiment, and 22.0 ± 0.7 μm for the salinity experiment. The diatom grew in all conditions. The mean daily growth rate at the exponential phase ranged from 0.26 to 0.55 (divisions/day). Growth rates were higher at higher temperatures at the same irradiance ≥ 46 μE/m²/s. There were no significant differences in growth rate among temperatures at 12 μE/m²/s. No significant differences were observed in growth rate among irradiances ≥ 46 μE/m²/s at the same temperature. Growth rates were significantly lower at 12 μE/m²/s than at higher irradiances for temperatures ≥ 15°C. The optimal growth was observed at 28-40 PSU. The diatom formed a single-layered colony, and stopped growing when it occupied the entire surface area of the culture plate. The cell size appeared to decrease gradually from 34.4 to 9.7 ± 0.5 μm in valve length during 130 generations (204 days). Sexual reproduction was observed at the 95th generation (13.4 ± 1.2 μm), during which the valve length restored to 33.8 μm.

**Key words:** Benthic diatom; *Cocconeis*; Growth; Abalone
材料および方法

実験に用いた C. scutellum var. parva は、東北区水産研究所内のアワビ飼育水槽から採取・分離し、ヨーガンソンの塩分塩添加海水培地にビタミン B12 を 0.05 μg/l 加えた培養液（以下ヨーガンソン培地）中で継代培養していたものである。培養水は、採取時の水温に近い 15℃である。水温と光量の影響を調べた実験に用いた細胞の実験開始時の大きさは、細胞長 26.2 ± 1.2 μm（平均値±標準偏差）、細胞幅 10.5 ± 1.3 μm であった。また、塩分の影響を調べた実験には、塩分長 22.0 ± 0.7 μm、細胞幅 15.6 ± 0.6 μm の細胞を用いた。

水温と光量の影響を調べた実験では、10、15、20 および 25℃の 4 つの水温実験を設定し、各々の水温について 12、46、78、112、135 μE/m²/s それぞれ 1,000、4,000、7,000、10,000、12,000 μE/m²/s の 5 段階の光量区を設けた。培養液には、pH 7.8 ± 0.3、塩分 33 PSU のヨーガンソン培地を用いた。また、塩分の影響を調べた実験では、ヨーガンソン培地（pH 7.8 ± 0.3）の塩分を調整し、18、23、28、31、36、40 および 44 PSU の 7 つの実験区を設定した。塩分の調整は、培地の作成際に、使用する滅菌混水海水の水分を蒸発させることにより高塩分海水を、蒸留水により希釈することにより低塩分海水を作成した。水温は 20℃、光量は 73 μE/m²/s とした。いずれの実験でも、光源には白色蛍光灯を用い、照明周期は 12 h: 12 h とした。細胞の培養は、培養液を 1 穴に 0.15 ml/ずつ入れた 96 穴の平底マルチプレート（底面積 0.32 cm²、内容積 0.37 ml、Corning Glass Works）を用いて行った。

各実験区につき約 30 穴に 1 細胞ずつ接種し、観察を開始した。このうち成長の良い 7 穴を 4 日後に選び、これらの増殖を 45 ～ 55 日間にわたり継続して観察した。観察・計数は細胞の増加に応じて、1 ～ 10 日間隔で個別観察を行い、培養液は 5 日おきに交換した。水温及び塩分については、実験に先立ち 1 週間以上の調製期間をおいた。

計数した個体数から、各計測日間の細胞増殖速度（μ）を以下の式（1）を用いて算出した。

\[ \mu = 1 / (t \times \log_{2} (N_{t} / N_{0}) \]

ここで、t は培養日数、N_{t} は培養期数最終日（t 日後）における細胞数、N_{0} は培養開始日における細胞数を示す。

細胞分裂に伴う細胞の大きさや形状の変化を把握するため、増殖特性を調べた上記の実験とは別に、204 日間にわたって 96 穴平底マルチプレート中で継代培養を行った。培養は、有性生殖により細胞の大きさが復活した直後の細胞長 34.4 μm、幅 23.1 μm の細胞から開始した。復活以前の細胞は、細胞長 15.1 ± 0.8 μm、細胞幅 10.1 ± 0.9 μm であった。培養液には、pH 7.8 ± 0.3、塩分 31 ± 33 PSU のヨーガンソン培地を用い、5 日ごとに新しい培養液と交換した。水温は 20℃、光量は 78 μE/m²/s で明暗周期 12 h: 12 h とした。細胞の大きさ測定および形状の観察は、5 ～ 10 日おきに無作為抽出した 30 細胞について実施した。世代数を算出するため、同時に細胞数も計数した。細胞がマルチプレートの底面を覆い尽くす前（約 25 ～ 35 日目）に、倍く小さな細胞を分離して、別の穴に栄養液で培養を継続した。観察期間中（204 日間）に 7 回の植え替えを行った。

増殖速度に及ぼす水温、光量の影響について、二元配置の分散分析により検定を行った。その結果、水温と光量の間に交互作用が認められた（p < 0.01）ため、全ての実験区をひとまとめにして一元配置の分散分析を行った。さらに、これらの実験区間で有意差が認められた（p < 0.001）ため、Tukey-Kramer HSD test により多重比較を行った。塩分が増殖速度に及ぼす影響については、一元配置の分散分析を行った結果、有意差が認められた（p < 0.001）ため、Tukey-Kramer HSD test により多重比較を行った。

結果

増殖に及ぼす水温と光量の影響 全ての水温区、光量区で増殖が認められ、測定終了時（45 ～ 55 日後）には全ての実験区で生細胞密度が 4 × 10^6 ～ 10^7 cells/cm² に達した（Fig. 1、2）。各測定日間の日間増殖速度（μ）は、いずれの実験区においても培養開始数の経過とともに減少した。各実験区における初めての日間の平均増殖速度と、指数増殖期（細胞数が 2 倍になった時点以降、生細胞率が 90% を下回る以前とした）の平均増殖速度および最大増殖速度を Table 1 に示した。

指数増殖期における平均増殖速度は、46 μE/m²/s 以上の光量区では概して高水温区ほど高く、10℃では他の水温区より有意に低かった（Tukey-Kramer HSD test, p < 0.05）。しかし、12 μE/m²/s では、水温による増殖速度の有意な差は認められなかった（Tukey-Kramer HSD test, p > 0.05）。水温別に見ると、15℃以上の実験区では 12 μE/m²/s での平均増殖速度は他の光量区に比べて有意に低かったが、46 μE/m²/s 以上では光量による有意な差は認められなかった（Tukey-Kramer HSD test, p > 0.05）。10℃では、光量による平均増殖速度の有意な差は認められず（Tukey-Kramer HSD test, p > 0.05）、全ての光量区で 0.26 ～ 0.29 の範囲に留まった。最大の平均増殖速度は、25℃、78 μE/m²/s 区での 0.55 ± 0.02 （平均値±標準偏差）であった（Table 1）。また、全実験区での最大増殖速度は、
25℃、78 μE/m²/s 区の1穴で測定開始後2日目と3日目の間に記録された3.94であった。

最初の10日間の増殖を同一水温区で光量別に比較すると、いずれの水温区においても、12 μE/m²/s 区では他の光量区に比べて増殖速度は有意に低かった（Table 1, Tukey-Kramer HSD test, p<0.05）。また、10℃と15℃の実験区では、46 μE/m²/sでの増殖速度も78 μE/m²/s以上に比べて有意に低かった（Tukey-Kramer HSD test, p<0.05）。同一光量区においては、46 μE/m²/s以上の光量区で、水温の高い実験区ほど増殖速度が有意に高かった（Tukey-Kramer HSD test, p<0.05）。

生細胞が培養器の底面一面を覆い尽くした後には、死細胞が出現し始めた。培養液を交換しても死細胞が増加し、生細胞の密度はそれ以上増加することはなかった。25℃の46 μE/m²/s以上の光量区では測定開始から25日目以降、15℃と20℃の46 μE/m²/s以上の光量区では35日目以降に死細胞の割合が増加し始めた（Fig. 3）。しかし、10℃では実験終了時まで死細胞が目立って増加することはなかった。死細胞の上に生細胞が重なって増加する現象は認められなかったが、生細胞の上に他の死細胞が重ねて増えることはなかった。

増殖に及ぼす塩分の影響 全ての塩分区で増殖したが、生細胞密度の最大値には実験区によって有意な差が認められた（Fig. 4, p<0.001）。生細胞密度は45日目には40 PSU で3.7×10⁶ cells/cm²、28－36 PSU では3.1－3.2×10⁶ cells/cm²に達した。それに対して、44 PSU では、31日目を過ぎた頃から細胞の増加速度が低下し、生細胞密度の最大値は2.8×10⁶ cells/cm²に留まった（Fig. 4）。44 PSU では、測定開始後10日目までの増殖速度（μ）が他の実験区に比べて有意に低かった（Table 2, Tukey-Kramer HSD test, p<0.05）。また、18 PSU と 23 PSU におい
Table 1. The growth rate of Cocconeis scutellum var. parva at different combinations of temperature and irradiance at 33 PSU with a 12:12 LD cycle

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Irradiance (μE/m²/s)</th>
<th>During the first 10 days</th>
<th>At the exponential phase</th>
<th>Maximum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>12</td>
<td>0.47 ± 0.03</td>
<td>0.29 ± 0.01</td>
<td>1.08 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>0.73 ± 0.05</td>
<td>0.28 ± 0.03</td>
<td>1.06 ± 0.11</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>0.85 ± 0.03</td>
<td>0.29 ± 0.04</td>
<td>1.35 ± 0.42</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>0.88 ± 0.02</td>
<td>0.26 ± 0.02</td>
<td>1.11 ± 0.14</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>0.86 ± 0.05</td>
<td>0.26 ± 0.01</td>
<td>1.43 ± 0.44</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>0.59 ± 0.09</td>
<td>0.35 ± 0.01</td>
<td>1.28 ± 0.27</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>0.92 ± 0.03</td>
<td>0.42 ± 0.00</td>
<td>1.57 ± 0.22</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>1.24 ± 0.02</td>
<td>0.44 ± 0.03</td>
<td>1.97 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>1.13 ± 0.06</td>
<td>0.42 ± 0.01</td>
<td>1.80 ± 0.19</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>1.09 ± 0.04</td>
<td>0.42 ± 0.01</td>
<td>1.96 ± 0.49</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>0.57 ± 0.07</td>
<td>0.27 ± 0.01</td>
<td>1.34 ± 0.33</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>1.20 ± 0.05</td>
<td>0.42 ± 0.01</td>
<td>1.98 ± 0.26</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>1.48 ± 0.03</td>
<td>0.43 ± 0.00</td>
<td>2.16 ± 0.19</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>1.29 ± 0.08</td>
<td>0.42 ± 0.01</td>
<td>2.06 ± 0.32</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>1.42 ± 0.06</td>
<td>0.42 ± 0.01</td>
<td>2.32 ± 0.42</td>
</tr>
<tr>
<td>25</td>
<td>12</td>
<td>0.72 ± 0.05</td>
<td>0.32 ± 0.05</td>
<td>1.08 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>1.44 ± 0.01</td>
<td>0.49 ± 0.12</td>
<td>2.40 ± 0.39</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>1.45 ± 0.10</td>
<td>0.55 ± 0.02</td>
<td>3.19 ± 0.46</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>1.50 ± 0.01</td>
<td>0.52 ± 0.10</td>
<td>2.86 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>1.48 ± 0.01</td>
<td>0.52 ± 0.07</td>
<td>3.19 ± 0.29</td>
</tr>
</tbody>
</table>

Table 2. The growth rate of Cocconeis scutellum var. parva at different salinities at 20°C, with a 78 μE/m²/s, 12:12 LD cycle

<table>
<thead>
<tr>
<th>Salinity (PSU)</th>
<th>Growth rate (divisions/day, mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>During the first 10 days</td>
</tr>
<tr>
<td>18</td>
<td>0.89±0.06</td>
</tr>
<tr>
<td>23</td>
<td>1.02±0.04</td>
</tr>
<tr>
<td>28</td>
<td>1.01±0.02</td>
</tr>
<tr>
<td>31</td>
<td>1.08±0.05</td>
</tr>
<tr>
<td>36</td>
<td>1.03±0.03</td>
</tr>
<tr>
<td>40</td>
<td>0.93±0.04</td>
</tr>
<tr>
<td>44</td>
<td>0.57±0.10</td>
</tr>
</tbody>
</table>

この大型細胞の蓋殻長は33.8μm、幅は24.3μmであった。増大殻を形成した時点での栄養細胞の平均サイズは、蓋殻長13.4±1.2μm、幅8.7±0.8μmであった。112世代目（184日目）以降も増大殻は多数形成され、栄養細胞の形成には至らなかった。

考 察
増殖特性 本実験に用いたC. scutellum var. parva株は、光量が同じ場合、設定した10〜25℃の範囲では概して水温が高いほど速やかに増殖した。しかしそ光量12μE/m²/sでは、水温による増殖速度の明確な差は認められなかった。同一水温下で比較すると、46μE/m²/s
飼料珪藻 Cocconeis の増殖特性

以上の光量区では増殖速度に有意な差は見られなかったが、12 μE/m²/s 区では15℃以上の水温で他の光量区より増殖は有意に遅かった。このように、水温と光量により増殖速度に変化が認められ、指数増殖期における平均増殖速度（μ）は0.26～0.55の範囲にあった。この平均増殖速度の最大値は、本種と同様に群体を造らず単体で増殖する他の海産珪藻群種の最大平均増殖速度19-22)に比べて低く、変動幅も小さい。同属の C. scutellum var. ornata13)，C. subtilaris20)とはほぼ同じレベルであった。

McIntire and Wulff23)は、室内実験により付着珪藻群落に及ぼす光の影響を検討し、C. scutellum var. parvaが光の弱い場合にのみ優占種となったことを報告している。海中に垂下した基質上に形成される付着珪藻群落中においても、C. scutellum var. parva その C. cocconeis 属の珪藻は弱光下や日射量の少ない場合に優占する傾が観察されている22, 24, 25)。付着珪藻群落の遷移過程を観察した結果27)、Cocconeis 属など匍匐固着型の付着形態4, 25, 28)を持つ種は、増殖速度は遅いが、大きな群体の陰になる群落の下層でも徐々に増加し続ける。光条件に係わらず最終的には優占種となることが報告されている。光量が少ない場合にはより早い段階から優占するものと考えられる22, 28)。本研究の結果からも、強光下ではC. scutellum var. parvaの増殖速度は他の多くの付着珪藻種に比べて低いことがわかり、それが強光下で優占しにくい原因の一つであることが示された。しかし、12 μE/m²/s（約1,000lx）での増殖速度は必ずしも他の付着形態を持つ種の増殖速度19-22)に比べて高いわけではない。本種が弱光下で優

---

Fig. 3. Survival rate of Cocconeis scutellum var. parva at different combinations of temperature (10, 15, 20, 25℃) and irradiance (12, 46, 78, 112, 135 μE/m²/s). Salinity was 33 PSU. Means and standard deviations (n=7) are presented.

Fig. 4. Growth of Cocconeis scutellum var. parva at different salinities (18, 23, 28, 31, 36, 40, 44PSU) at 20℃, 78 μE/m²/s on a 12:12 LD cycle. Means and standard deviations (n=7) are presented.
Fig. 5. Survival rate of Cocconeis scutellum var. parva at different salinities (18, 23, 28, 31, 36, 40, 44 PSU) at 20°C, 78 μE/m²/s on a 12:12 LD cycle. Means and standard deviations (n=7) are presented.

Fig. 6. The change in cell size of Cocconeis scutellum var. parva during 130 generations (204 days). Means and standard deviations (n=30) are presented.
増殖速は、前者では20℃、78 μE/m²/s、33 PSUで0.43（Table 1）、後者では20℃、78 μE/m²/s、31 PSUで0.29、20℃、78 μE/m²/s、36 PSUで0.30であった（Table 2）。これは、2つの実験に用いた細胞の大きさが違っていた（実験開始時の平均胞長は、それぞれ16.2 μmと22.0 μm）ことによるものと考えられる。204日間にわたる細胞の形態変化を調べた実験では、細胞の大きさの減少にともなって増殖速度が増加する傾向が認められた。異なる珪藻種類の比較研究では、最大増殖速度が細胞体積と負の相関関係にあることが報告されている29,30。

増殖に適した水温、光量、塩分の範囲内でも、細胞が培養器の内壁一面に広がった後には、培養液を交換しても死細胞が増加し、生細胞が重なって増殖することなかった。したがって、本種の増殖量は付着基質の表面積に規定されることが明らかになった。

形態変化：神奈川県油蔵湾から周年にわたり採取されたC. scutellum var. parvaの細胞の大きさは、観察長11.5～34.0 μm、幅7.3～19.2 μmの範囲にあたった31。

本研究に用いた株の大きさもほぼ同じ範囲で変化した。130世代目には観察長が9.7±0.1 μmまで縮小したが、配偶子を形成して有性生殖を行い始めた細胞の大きさは、観察長13.4±0.2 μmであり、配偶子の形成条件が整っている場合には、この程度の大きさになると有性生殖を行い大きさを回復するものと考えられる。

本研究では配偶子の形成条件を明らかにするには至らなかったが、C. scutellum var. ornataでは水温と日長が配偶子の形成に関与していることが報告されている13。

アワビ飼料としての大量培養法：C. scutellum var. parvaを単種で培養する場合、本研究で設定した範囲では、水温25℃、光量46 μE/m²/s以上、塩分28－40 PSUで最も速く最大密度まで増殖させることができた。細胞が重なって付着することなく、基質一面向って增殖は停止するため、細胞の収量を増やすためには、付着基質の表面積を増やす必要がある。本種は非常に付着性が強く、基質から無理に剥離すると多くの細胞の上部だけが剝がれ城市構築してしまう。そのため、他のチャップでは有効な田中への開発した培養装置などにより珪藻を剝離して収穫する方法は利用できない。珪藻の付着基質をそのままアワビ幼生の飼育板とすることが望ましい。

C. scutellum var. parvaは、他の珪藻と比較するとアワビ幼生の着底、変態に適した付着基質であるが5,6、飼育板に比べて不安定で5,6、変態後1mm程度までの初期飼育にとっては必ずしも飼料価値は高くない16,33。初期飼育が効率的にCocconesisを摂取できるようになるのは飼育0.8～1mm以上になってからである2,16。単種のC. scutellum var. parvaが着底した基質にアワビ稚貝（殻長1cm以上）を付け、稚貝を剝奪する（珪藻を摂取させる）ことで着底・変態率を安定的に高めることができるので、また、珪藻を剝奪する際に分泌される稚貝の足跡粘液は、1mm以下の初期稚貝の飼料となることが明らかにされている3。培養したC. scutellum var. parvaをアワビの飼料として用いるためには、稚貝を剥落させたものを用いるか、変態初期の飼料として好適な他の珪藻16,29を初期に併用する方法が有効と考えられる。

実際の種苗生産現場においては、培養した珪藻をアワビの飼育槽内で可能な限り長く健康な状態で飼育することが重要である。本研究の結果からみると、低温、弱光下では本種の増殖は遅いか、比較的長期間にわたり生細胞率を高く維持することができ、飼料として利用する場合にはむしろ好都合かも知れない。また弱光下では、他柱の藻類を押し出しうることもできる。Cocconesisを積極的には摂取せず、他の付着性の弱い珪藻を優先的に摂取する殻長1cm程度以上のアワビ稚貝5,7,34から剥落させる方法は、厚生の着底・変態率を高め、初期稚貝の飼料を保証する効果があり、Cocconesisの優先的な管理を長期に維持するためにも有効と考えられる。

要約

アワビ初期稚貝の飼料として好適な付着珪藻Coccones scutellum var. parvaの増殖に及ぼす水温（10, 15, 20, 25℃）、光量（12, 46, 78, 112, 135 μE/m²/s）、及び塩分（18, 23, 28, 31, 36, 40, 44 PSU）の影響を調べた。

設定した水温の範囲内においては、光量が同じ場合、46 μE/m²/s以上の光量で高水温区ほど速やかに増殖した。12 μE/m²/sでは、水温による増殖速度の有意差は認められなかった。同一水温下では、46 μE/m²/s以上の光量区では増殖速度に有意な差は見られなかった。15℃以上の水温区においては、12 μE/m²/sでの増殖はそれより高い光量区より有意に遅かった。塩分については、28－40 PSUの塩分区で良好に増殖したが、44 PSUでは増殖速度が有意に低く、18 PSUと23 PSUでは細胞が最大密度に達しなかった。細胞が重なって増殖することはなく、飼育槽の内壁一面に広がるとそれに伴う増殖は止まり、死細胞率が増加した。

殻長34.4 μm、幅23.1 μmの細胞から開始した継代培養期間中に、細胞の大きさは徐々に減少し、204日目（約130世代目）には殻長9.7±0.5 μmとなった。約95世代目（殻長13.4±1.2 μm）に有性生殖が観察され、大型の栄養細胞（殻長33.8 μm）が出現した。
謝辞

本研究は、農林水産省の大型枠構研究「バイオアソシメイを含む」の一環として行われた。ここに記して関係
各位に感謝の意を表する。また、本稿を御校閲いただいた
東北区水産研究所の斎藤健弘博士、資源増殖部長ならび
に山下 洋先生、九州水産研究所研究長、および専門家に
関連をお願いした Rodney D. Roberts 博士に深謝する。

文献

1) 河村知彦・齋藤省吾 (1992): エゾアワビ幼生の著底と
変態に及ぼす付着珪藻の影響。水産増殖, 40(4), 403-409.
(1995): Dietary value of Benthic diatoms for the growth of
post larval abalone Haliotis discus hannah. J. Exp. Mar.
Survival and growth rates of post-larval abalone Haliotis
discus hannai fed conspecific trail mucus and/or benthic
diatom Cocconeis pulicaris var. parata. Aquaculture, 152,
129-138.
4) 河村知彦 (1994): 海産付着珪藻の分類と生態。付着物
生理研究, 10(2), 7-25.
5) 関 哲夫 (1978): アワビ稚生産の考え方。増殖技術
の基礎と理論 (日本水産学会編), 恒星社厚生局, 東京,
p. 57-67.
6) 鞍谷 晃・鈴木秀和 (1987): クロアワビ稚貝飼育法の
水産増殖, 35(2), 91-98.
Changes of algal community on the plastic plates used for
rearing the abalone Haliotis discus hannai. Nippon Suisan
Gakkaishi, 53(2), 2163-2167.
post-larvae (Haliotis midae) and the effect of pre-grazing
9) Ebert, E. E. and J. L. Houk (1984): Elements and
innovations in the cultivation of red abalone Haliotis
10) Hahn, K. O. (1989): Handbook of culture of abalone and
in the red abalone (Haliotis rufescens): an examination of
inductive cues and substrate selection. Aquaculture, 102,
143-153.
12) 深永光子 (1995): アワビ類の繁殖生理と稚苗生産の確
立。アワビの稚苗生産技術 (深永 光子・大森正明
・河原郁美・石田一・柳竹正重編), 日本栽培漁業協
会, 東京, pp. 1-92.
13) Mizuno, M. and K. Okuda (1985): Seasonal change in
the distribution of cell size of Cocconeis pulicaris var. ornata
(Bacillariophyceae) in relation to growth and sexual
reproduction. J. Phycol., 21, 547-553.
14) 大貫武彦・松井敏夫・高木要之 (1992): 付着珪藻
Cocconeis sp. の増殖に及ぼす環境諸要因の影響。水産増殖,
40(2), 241-246.
15) 山本栄一・古田哲平・金沢忠五 (1984): 種類摂食産業
試験。昭和58年度魚介養殖業者試験報告書, 44-46.
review of the feeding and growth of post larval abalone. J.
17) Jorgensen, E. G. (1962): Antibiotic chemicals from cells
and solution of unicellular algae with special reference to
18) Eppeley, R. W. (1977): The growth and culture of diatoms,
in "The Biology of Diatoms" (ed. By D. Werner), University of
California Press, California, pp. 24-64.
temperature on the growth of littoral marine diatoms in culture.
Physiol. Plant., 17, 951-963.
20) 大貫武彦 (1986): りん葉体及びのり脚に寄生する珪藻
の生態に関する研究。水大校研報, 34(2,3), 37-88.
21) 大貫武彦・岩野英樹・星野正樹 (1986): 碇藻 Cylindro-
discus sterletendorfii (Ehrenberg) Reimann et Lewin の増殖
に及ぼす環境要因の影響。水大誌, 52(9), 1635-1640.
22) 河村知彦 (1994): 海産付着珪藻群の変動機構に関す
る研究。学位論文, 東京大学, 東京, 221p.
for the study of marine benthic diatoms. Limnol. Oceanogr.,
14, 667-678.
benthic diatom communities colonizing glass slides in
Auraboro Bay, Japan. Diatom Res., 7(2), 227-239.
26) 河村知彦 (1995): 付着珪藻群の変動機構。月刊海洋,
27(10), 591-596.
27) Mizuno, M. (1992): Influence of salinity on the growth of
marine and estuarine benthic diatoms. Jpn. J. Phycol., 40,
33-37.
28) 田中伸夫 (1984): 茎状藻の付着珪藻の分布に
及ぼす Cocconeis 属と Syndra 属について。養殖研報,
6, 59-64.
29) Williams, R. B. (1964): Division rates of salt marsh diatoms
in relation to salinity and cell size. Ecology, 45, 877-880.
and size reduction of marine and estuarine diatoms. J.
31) 河村知彦・平野利太郎 (1989): 神奈川県油蔵湾の付着
珪藻。東北水研報, 51, 41-73.
32) 田中伸夫 (1981): 天然飼料としての付着珪藻とその培
養。水産土木, 24(1), 37-41.
and growth rate of newly metamorphosed abalone Haliotis
discus hannai fed on four species of benthic diatom.
Fisheries Sci., 61(2), 357-358.
34) 高見秀満・河村知彦・山下 洋 (1996): エゾアワビ1
歳貝に対する付着珪藻の飼料価値。水産増殖, 44(2),
211-216.