ワクモ(Dermanyssus gallinae)の問題と対策の試み

<table>
<thead>
<tr>
<th>誌名</th>
<th>鶏病研究会報</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSN</td>
<td>0285709X</td>
</tr>
<tr>
<td>巻/号</td>
<td>43増刊号</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 23-30</td>
</tr>
<tr>
<td>発行年月</td>
<td>2007年9月</td>
</tr>
</tbody>
</table>

農林水産省 農林水産技術会議事務局筑波産学連携支援センター
Tsukuba Business-Academia Cooperation Support Center, Agriculture, Forestry and Fisheries Research Council Secretariat
ワクモ（Derm'anyssus gallinae）の問題と対策の試み

Red Mite, Derm'anyssus gallinae; Current Problem and Trials for Control

村野多可子
千葉県畜産総合研究センター, 〒289-1113 千葉県八街市八街へ16-1

Takako Murano
Chiba Prefectural Livestock Research Center,
He 16-1 Yachimata, Yachimata, Chiba, 289-1113

要 約
国内におけるワクモ（Derm'anyssus gallinae）の浸潤率は、産卵率では85.2%と高い値を示した。ワクモによる被害は、潰れた飽血ワクモの血液や排泄物などの付着による汚卵の発生、人への被害、産卵率への影響、鶏の貧血・死亡がなどであった。また、ワクモ寄生鶏産卵産卵で卵重の減少、濃厚卵白・H.U.の低下などがみられた。市販されているワクモ駆除目的の殺虫剤の大半に抵抗性的出現が確認されたため、現時点でワクモ防除のために考えられるいくつかの方法を試みた。ワクモの卵時に死亡する水温は65℃以上であった。24時間のホルマリン蒸蒸によるワクモの死亡率は34.8～62.2%であり、産卵数が卵の孵化率は90%以上を示した。環境制御資材によるワクモの駆除は資材により大きく効果が異なった。年々市販殺虫剤に対するワクモの抵抗性出現が増加している。早期に殺虫剤を含めた新しい駆除法の開発が望まれる。

キーワード: 浸潤状況，被害，防除，ワクモ

は じ め に
2002年からワクモ（Derm'anyssus gallinae : red mite, poultry mite, chicken mite, bird mite）の研究に取り組み始めたが、年々ワクモに関する問い合せは増加し、それに伴い、市販殺虫剤の防除効果に対する疑問が寄せられるようになった。しかし、国内におけるワクモの浸潤状況や市販殺虫剤に対するワクモの抵抗性の出現を広範囲に調査した報告は皆無である。ワクモを駆除するにあたり、これらの状況を把握することは必須である。そこで、今回、全国規模でワクモの浸潤状況、市販殺虫剤に対する抵抗性の出現、ワクモによる被害状況などを調査するとともに、ワクモの駆除に対する野外の質問に応えるためにいくつかの試みを実施したので報告する。

1. 国内におけるワクモの浸潤状況

東京都、大阪府、福井県、和歌山県、高知県を除いた1道1府40県におけるワクモの浸潤状況を調査した。調査した農場数は各県によって異なるが、産卵数は40県352農場、採卵育成鶏は22県69農場、採卵種鶏は10県16農場、ブロイラーは29県499農場、ブロイラー種鶏は21県58農場の計992農場であった。平成18年2月の畜産統計報告9)の産卵鶏と採卵育成鶏1,000羽以上の国内飼養数は3,740戸であり、今回調査した421戸は約11%にあたる。

ワクモの浸潤率は、産卵鶏飼養農場では85.2%（300/352農場、以下農場は略）、採卵育成鶏飼養農場では55.1%（38/69）、採卵種鶏飼養農場では56.3%（9/16）であり（図1）、それぞれ19/40県、7/22県、6/10県では調査したすべての農場でワクモの汚染が確認された。また、ブロイラー飼養農場では0.6%（3/499）、ブロイラー種鶏飼養農場では

2007年8月27日受付
鶏病研究 43 巻増刊号，23～30（2007）

--- 23 ---
29.3% (17/58) であり（図1）、種鶏飼育農場では3/21 県で調査したすべての農場でワクモの汚染が確認された。

ワクモで汚染された産卵鶏飼育農場300 戸の内、飼育
羽根数が把握できた265 戸の内訳は、5万羽未満27.9％
（74/265）、5万羽以上10万羽未満18.1％（48/265）、10万
羽以上30万羽未満35.5％（94/265）、30万羽以上50万羽
未満8.3％（22/265）、50万羽以上100万羽未満7.9％（21/
265）、100万羽以上2.3％（6/265）であり、ワクモは小規
模から大規模農場までに浸潤していることが確認され
た。300 戸の内、鶏舎構造が確認された279 戸の内訳は、
開放鶏舎57.3％（160/279）、ウィンドウレス鶏舎34.1％
（95/279）、セミウィンドウレス鶏舎0.7％（2/279）、ウィ
ンドウレス鶏舎と開放鶏舎の組み合わせ7.2％（20/279）、
セミウィンドウレス鶏舎と開放鶏舎の組み合わせ0.7％
（2/279）であった。鶏舎構造によるワクモの汚染の差異は
この結果だけでは読みとれないが、反対にどのような鶏
舎構造であってもワクモが浸潤する可能性は十分にある
と考えられた。また、飼育鶏種が確認された162 戸の内訳
は、多い順にジュリア135 戸、ボリスブラウン62 戸、デ
カルプ27 戸、マリア22 戸、もちもと8 戸、ソニア6 戸、ローラ、
ジュリアライト、パブコック、シェーバーが各2 戸で1農場で
複数鶏種を飼育している場合もあった。しかし、この順位はワクモが寄生を好む順
序とは思えず、国内における飼育シェアに起因するもの
と考えられた。トリサシダニでは飼柄によりダニに対する
抵抗性が異なることが報告されているが、ワクモにお
いても同様な検討が必要と考えられる。

2. ワクモによる被害状況

北海道（1農場、以下農場は略）、岩手県（4）、秋田県
（1）、宮城県（2）、福島県（2）、群馬県（5）、栃木県（3）、
茨城県（14）、埼玉県（4）、千葉県（46）、神奈川県（2）、
新潟県（1）、静岡県（2）、愛知県（2）、岐阜県（1）、石川
県（1）、三重県（1）、京都府（2）、香川県（1）、兵庫県
（2）、福岡県（1）、熊本県（1）、鹿児島県（1）の1道1府
21 県、100 農場から、当センターに市販殺虫剤に対する
感受性試験のために送付されたワクモに同封されたアン
ケート結果によって、ワクモによる被害状況を分類した。
被害状況についての記載は、100 農場中66 農場であり、1
農場で複数の回答もあり、回答数は101 であった。

もっとも被害状況が大きかったのは、汚卵の発生であ
り、21.8%（22/101 回答）を示した。汚卵とは鶏卵上に生
きたワクモや死骸、ワクモの排泄物、飼れたワクモの血
液が付着したものであり、GP センターから苦情が来
との回答であった。

ついて多かったのは、人への被害と産卵率への影響
で、それぞれ18.8%（19/101 回答）を示した。人への被
害は、ワクモに刺され、痛みを伴う発疹、皮膚炎、アレ
ルギー症状など直接的なものと、ワクモがいることで
で気持ちが悪い。作業員が衣服にワクモを付着したまま
帰宅し家族に嫌がられることなどから離職する場合が多
く、労働者の確保が危ぶまれる間接的なものがあった。
産卵率への影響は、若干の低下、2～3%，5～15%，20～
30%（図2）とさまざまであった。産卵率の低下と併せ
て、1農場でハウユニット（H.U）が可能な記載（1%）が
あった。さらに死亡鶏の発生、鶏卵が自ずかに貧血状態
を示したなどの鶏体への影響が17.8%（18/101 回答）を
示した。愛宕鶏のような少羽根数飼養の場合には100%、採
卵鶏では大すう導入後、数10 羽/日ずつ死亡がみられ
た記載もあった。また、鶏が神経質になり、騒ぎやすく
なったなど、鶏へのストレスを心配した回答もあった。
その他、専属の駆除作業者が必要になったが、駆除後の再発生期間が短くなり、薬剤の効果が劣化してきた。定期的散布が必要で、薬剤の効果がみられないなど、ワクモの駆除に対する回答が13.9%（14/101回答）を示した。この項目に関する記載は13.9%であったが、感受性試験依頼の際には100%の農場から「現在使用している市販殺虫剤の効果に対する不満感」が訴えられている。

残りの7.9%（8/101回答）は被害と捉えるべきかどうかは疑問であるが、今年になって初めてワクモの発生がみられ、特に育成（若齢鶏）に発生が多いなどであった。

3. ワクモ寄生が卵質に及ぼす影響

ワクモによる被害状況の回答の約半分については、今までに報告1-3,5,8,10,11,14,15で示してきたものと同様な結果である。しかし、1農場からのワクモ寄生卵産出卵の内部卵質(H.U)低下については、これまで記載はみられない。外部卵質についてはCosorobcaが卵重の減少、卵殻の悪化などを報告している。トリササケではDevaneyが寄生卵から産出された卵の内部卵質について、H.Uや卵黄色で差がみられなかったと報告している。そこでワクモ寄生卵が産出する卵について、卵質検査を実施した。

2006年5月12日孵化の白羽卵産出鶏のジュリア80羽を用い、70日齢に40羽をワクモで污染している鶏舎に移動（ワクモ寄生群）し、残りの鶏は無寄生の対照鶏（無寄生群）とした。卵質検査は210日齢（12月初旬）から420日齢（7月初旬）まで、検査前日に産出された卵をすべて（30〜40個/Es）について毎月実施した。また、各群7個の卵について、6月に卵黄中の脂肪酸組成と含有量をガスクロマトグラフィー（島津GC17-A）、7月に卵黄中の遊離アミノ酸および有機酸含有量をキャピラリー電気泳動装置（Agilent G1600A）で測定した。ワクモの汚染状況は調査期間を通じて、ケージのつなぎ目、飼箱、水槽などに集塊で観察されたが、5月以降、さらに増殖が盛んになった。

1）卵質検査成績

検査月別の成績を表1に示した。卵重は8回の検査の内、3回においてワクモ寄生群が無寄生群に比べて明らか（p<0.05）に、また残りの検査月でも低い値を示した。この原因はワクモの吸血によるストレスにより、飼料摂取量が減少したためと考えられる。また、卵黄重も卵重に伴って、5/8回でワクモ寄生群が明らか（p<0.05）に、また残りの月でも低い値を示したが、卵重に対する卵黄重量割合では差はみられなかった。

卵殻厚は4月まではワクモ寄生群が、5月以降は無寄生群が高い値を示したが、有意な差はみられなかった。卵殻厚は各検査月とも両群ほぼ同様の値であったが、5月の検査ではワクモ寄生群が明らかに高い値を示した（p<0.05）。卵殻重量は卵殻厚と同様の傾向を示し、濃厚卵白不安は調査期間を通じて、ワクモ寄生群が無寄生群に比べて低い値を示す傾向にあったが、6月の検査では明らかに低い値を示した（p<0.05）。H.Uは各検査月とも両群ほぼ同様の値であったが、6月、7月の検査ではワクモ寄生群が明らかに低い値を示した（p<0.05）。H.Uが低下したと回答した農場の、どの時点でH.Uを測定したか不明であるが、ワクモ寄生がH.Uに影響を与えたことが示唆された。

2）脂肪酸組成と含有量

卵黄中の脂肪酸組成は、飽和脂肪酸のミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、不飽和脂肪
<table>
<thead>
<tr>
<th>検査項目</th>
<th>ワクモ</th>
<th>検査日齢（月）</th>
<th>210日齢（12月）</th>
<th>240日齢（1月）</th>
<th>270日齢（2月）</th>
<th>300日齢（3月）</th>
<th>330日齢（4月）</th>
<th>360日齢（5月）</th>
<th>390日齢（6月）</th>
<th>420日齢（7月）</th>
</tr>
</thead>
<tbody>
<tr>
<td>卵重 (g)</td>
<td>有</td>
<td>59.0±3.3b</td>
<td>60.5±3.2b</td>
<td>62.9±3.7b</td>
<td>62.6±4.1b</td>
<td>62.1±4.1b</td>
<td>60.3±4.2b</td>
<td>62.8±2.6b</td>
<td>63.6±5.1b</td>
<td></td>
</tr>
<tr>
<td>無</td>
<td>61.9±4.2c</td>
<td>62.4±4.0a</td>
<td>64.9±4.2a</td>
<td>64.4±4.0a</td>
<td>64.9±4.8a</td>
<td>64.9±4.5a</td>
<td>64.3±4.2a</td>
<td>68.0±4.5a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>卵黄重 (g)</td>
<td>有</td>
<td>14.7±0.8b</td>
<td>15.5±1.3b</td>
<td>16.8±1.1b</td>
<td>16.5±1.3b</td>
<td>16.9±1.4b</td>
<td>16.5±1.3b</td>
<td>17.3±1.4b</td>
<td>17.4±1.5b</td>
<td></td>
</tr>
<tr>
<td>無</td>
<td>15.4±1.2b</td>
<td>15.9±1.1b</td>
<td>17.4±1.2b</td>
<td>17.3±1.4b</td>
<td>17.7±1.5b</td>
<td>17.9±1.8b</td>
<td>17.9±1.3b</td>
<td>17.9±1.8b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>卵殻強度 (kg/cm²)</td>
<td>有</td>
<td>4.30±0.65</td>
<td>4.49±0.70</td>
<td>4.48±0.61</td>
<td>4.52±0.56</td>
<td>3.98±0.74</td>
<td>3.58±0.45</td>
<td>3.25±0.45</td>
<td>3.39±0.49</td>
<td></td>
</tr>
<tr>
<td>無</td>
<td>4.07±0.53</td>
<td>4.26±0.50</td>
<td>4.36±0.65</td>
<td>4.32±0.64</td>
<td>3.86±0.72</td>
<td>3.84±0.53</td>
<td>3.37±0.66</td>
<td>3.55±0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>卵殻厚 (mm)</td>
<td>有</td>
<td>0.38±0.03</td>
<td>0.38±0.02</td>
<td>0.39±0.02</td>
<td>0.39±0.02</td>
<td>0.37±0.02</td>
<td>0.35±0.03b</td>
<td>0.33±0.04</td>
<td>0.35±0.02</td>
<td></td>
</tr>
<tr>
<td>無</td>
<td>0.38±0.02</td>
<td>0.38±0.03</td>
<td>0.38±0.02</td>
<td>0.38±0.02</td>
<td>0.37±0.02</td>
<td>0.37±0.02</td>
<td>0.35±0.03b</td>
<td>0.35±0.03</td>
<td>0.35±0.03</td>
<td></td>
</tr>
<tr>
<td>卵殻重 (g)</td>
<td>有</td>
<td>6.0±0.6</td>
<td>6.1±0.5</td>
<td>6.2±0.4</td>
<td>6.2±0.5</td>
<td>6.0±0.4</td>
<td>5.6±0.6b</td>
<td>5.5±0.6</td>
<td>5.9±0.6</td>
<td></td>
</tr>
<tr>
<td>無</td>
<td>6.1±0.3</td>
<td>6.1±0.4</td>
<td>6.3±0.5</td>
<td>6.2±0.4</td>
<td>6.1±0.5</td>
<td>6.0±0.5a</td>
<td>5.6±0.5</td>
<td>6.1±0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>濃厚卵白高 (mm)</td>
<td>有</td>
<td>8.7±0.7</td>
<td>8.3±1.0</td>
<td>8.0±1.0</td>
<td>8.2±0.8</td>
<td>8.0±0.7</td>
<td>7.8±0.8</td>
<td>7.6±0.7b</td>
<td>7.2±0.9</td>
<td></td>
</tr>
<tr>
<td>無</td>
<td>8.8±0.7</td>
<td>8.7±1.0</td>
<td>8.1±0.8</td>
<td>8.3±0.8</td>
<td>8.0±0.9</td>
<td>7.8±1.3</td>
<td>8.2±0.8a</td>
<td>7.7±0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>卵質 (H.U.)</td>
<td>有</td>
<td>93.3±3.7</td>
<td>91.0±5.2</td>
<td>88.8±6.1</td>
<td>89.5±4.7</td>
<td>88.8±4.2</td>
<td>88.1±4.9</td>
<td>86.6±4.3b</td>
<td>83.3±5.7b</td>
<td></td>
</tr>
<tr>
<td>無</td>
<td>93.4±3.8</td>
<td>92.3±5.2</td>
<td>88.9±4.4</td>
<td>90.2±4.0</td>
<td>88.2±4.0</td>
<td>87.8±5.6</td>
<td>89.8±4.4a</td>
<td>88.2±4.6a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>卵黄色</td>
<td>有</td>
<td>10.6±0.9</td>
<td>9.9±0.7</td>
<td>10.0±0.8</td>
<td>103.0±7.1b</td>
<td>10.1±0.8b</td>
<td>9.7±0.8</td>
<td>10.0±0.7</td>
<td>9.5±0.7</td>
<td></td>
</tr>
<tr>
<td>無</td>
<td>10.5±0.9</td>
<td>9.8±0.9</td>
<td>9.9±0.7</td>
<td>9.9±0.6a</td>
<td>10.5±0.9a</td>
<td>10.1±0.8</td>
<td>9.9±0.6</td>
<td>9.4±0.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 異符号間有意差あり（p<0.05）
4. ワクモの市販殺虫剤に対する抵抗性の出現

ワクモの被害状況の項目で記載した各県から送付されてきた吸血成蚊ワクモの種について、ワクモの防除を目的とした市販殺虫剤に対する感受性をin vitro 試験で実施した。

試験にはカーバメイト系剤カルバリル75% 水和剤の150倍、ブチルフェニル・メチルカーバメイト（BPMC）20% 乳剤の100倍、プロボクス50%の200倍、ビレスロイド系剤のペルメトリン4％乳剤の400倍、有機リン系剤のフェニトロチオン10％乳剤の50倍、ジクロロスルフ0.3％油剤の10倍、トリクロロホロン97％散剤の200倍の7薬剤を用いた。

これらの薬剤の農薬での使用状況をアンケートで調査結果で整理したが、記載の仕方はさまざまなであり、過去からの使用履歴や散布濃度・回数が明確なものから、薬剤名のみのものもあった。カルバリル51/100農薬、BPMC 29/100農薬、プロボクス21/100農薬、ペルメトリン32/100農薬、フェニトロチオン24/100農薬、ジクロロスルフ9/100農薬、トリクロロホロン21/100農薬であったが、1農薬あたり複数薬剤を使用していた場合も多く、なかには過去からの薬剤からみると、前記の薬剤すべてを使用した農薬もあった。しかし、4/100農薬は薬剤の使用は皆無であった。

薬剤処理48時間後の感受性試験結果を表4に示した。

表 2. 卵黄中の脂肪酸含有量（％）

<table>
<thead>
<tr>
<th>脂肪酸</th>
<th>ワクモ寄生群</th>
<th>無寄生群</th>
</tr>
</thead>
<tbody>
<tr>
<td>ミリシチン酸</td>
<td>0.3*</td>
<td>0.3</td>
</tr>
<tr>
<td>バルミチン酸</td>
<td>24.7</td>
<td>24.5</td>
</tr>
<tr>
<td>バルミトレイン酸</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>ステアリン酸</td>
<td>9.4</td>
<td>8.8</td>
</tr>
<tr>
<td>オレイン酸</td>
<td>47.0</td>
<td>46.8</td>
</tr>
<tr>
<td>リノール酸</td>
<td>14.2</td>
<td>14.1</td>
</tr>
<tr>
<td>アラキジン酸</td>
<td>0.9</td>
<td>1.9</td>
</tr>
</tbody>
</table>

*3個/検体×7検体の平均

表 3. 卵黄中の遊離アミノ酸と有機酸含量（mg/100g）

<table>
<thead>
<tr>
<th>群</th>
<th>遊離アミノ酸</th>
<th>有機酸</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>アスパラギン酸</td>
<td>グルタミン酸</td>
</tr>
<tr>
<td>ワクモ寄生群</td>
<td>21.4±1.5</td>
<td>70.9±2.6</td>
</tr>
<tr>
<td>無寄生群</td>
<td>20.5±1.7</td>
<td>68.6±1.8</td>
</tr>
</tbody>
</table>

*3個/検体×7検体の平均

表 4. 薬剤処理48時間後のワクモの死亡率による農家戸数割合（％）（農家戸数/検査農家戸数）全国

<table>
<thead>
<tr>
<th>死亡率 （％）</th>
<th>カーバメイト系系</th>
<th>ビレスロイド系系</th>
<th>有機リン系系</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>カルバリル150倍</td>
<td>BPMC100倍</td>
<td>プロボクス200倍</td>
</tr>
<tr>
<td>0</td>
<td>0.0*</td>
<td>4.4(4/90)</td>
<td>1.0(1/100)</td>
</tr>
<tr>
<td>0〜25</td>
<td>0.0</td>
<td>31.1(28/90)</td>
<td>0.0</td>
</tr>
<tr>
<td>25〜50</td>
<td>2.0(2/100)</td>
<td>22.2(20/90)</td>
<td>4.0(4/100)</td>
</tr>
<tr>
<td>50〜75</td>
<td>1.0(1/100)</td>
<td>16.7(15/90)</td>
<td>14.0(14/100)</td>
</tr>
<tr>
<td>75〜100</td>
<td>1.0(100/100)</td>
<td>15.6(14/90)</td>
<td>50.0(50/100)</td>
</tr>
<tr>
<td>100</td>
<td>65.0(65/100)</td>
<td>10.0(9/90)</td>
<td>31.0(31/100)</td>
</tr>
</tbody>
</table>

*0％の部分はそのままとする
5. ワクモの防除のいくつかの試み

ワクモの市販殺虫剤に対する抵抗性の出現、ポジティブリストの施行など、ワクモの防除に対して益々難問が生じてきた。このため、野外においては様々な取り組みがなされるとともに、動問点も生じてきている。そこでワクモの防除に対して質問されたくつかの試みについて簡単な試験方法で効果を試した。

1) ワクモが瞬時に死亡する水温

異なった2農場で採取したワクモを、40、50、55、60、65、70、80℃の8段階の温度の水に各24時間、各72時間で水温を測定した結果、65℃では2農場のワクモとも瞬時に100%の死亡を示した（図3）。このため、廃卵出荷後の猶予処理には、スチームクリーナーを用いることが望まれる。

2) 消毒薬

逆性石けん製剤の塩化ジデシルメチルアンモニウム10%液剤（A剤）、[モノ（ビス（塩化トリメチルアンモニウムメチレン））アルキル（C9-15）]トルエン（50%溶液）20%液剤（P剤）複合製剤のオルトジクロルベンゼン85.5%液剤（Z剤）、オルトジクロルベンゼン75%液剤（TA剤）、オルトジクロルベンゼン70%液剤（T剤）をそれぞれ各100倍に稀釀して用いた。これら3薬剤をワクモに滴下後、ワクモをバスタールビペットに伝染して、24、48、72時間後の生存率・死亡率を顕微鏡で観察した。この結果、T剤は24時間後に50%前後の死亡率を示したが、残りの製剤では0～18%であった。しかし、これらの製剤の効果効果は耐性ではなく消毒であり、当然の結果といえる。

3) ホルマリン蒸蒸

規定量のホルマリン濃度で蒸蒸した環境下でワクモを各24、48時間静置し、その後24、48、72時間の生存・苦悶・死亡率を顕微鏡で観察した。ワクモは試験前7日、2日、当日に採取したものを使った。ホルマリン24時間の感作では各採取日による死亡率は、72時間後の観察で47.9%、62.2%、34.8%であった。しかし、48時間の感作では72時間後には74%、100%、100%の死亡率を示した。

ホルマリン蒸蒸がワクモの卵へ及ぼす影響をみるために、感作前に産出された卵と感作中に産出された卵の孵化率、第1若ダニへの脱皮率を調査した。24時間の感作では孵化率はそれぞれ93.7%（74/79個）、95.3%（61/64個）、孵化した幼ダニから第1若ダニへの脱皮率は、100%、95.3%であった。

48時間の感作では孵化率は52.3%（46/88個）、20%（15個）、第1若ダニへの脱皮率は45.7%、100%であった。

4) 水溶液のpH値

pH 3.9、9.6、13.5の水溶液に浸した卵殻に24時間ワクモを感作後、ワクモをパストルビペット内に吸い、24、48、72時間後の生存率・苦悶・死亡率を顕微鏡で観察した。72時間後の死亡率は、それぞれ44.4%、23.3%、21.4%を示した。さらに、pH 3.25、13.5の水溶液をワクモに確実滴下後、同様の観察を24、48時間で実施した。48時間後の死亡率は、それぞれ0%、64%であった。強アルカリ性であっても、ワクモを100%死亡させることは困難であった。

5) 資材

\[\text{図3. 水温とワクモの死亡率の関係} \]
卵成分を用いた商品の生成

6）その他

500倍に栽培したワクモを探して、ワクモの巣を用いて、卵実験を実施した。卵実験は、同一巣内で大きく結果を異なるものであった。これら巣を実験農場で使用した場合、放牧量やケージなどに付着する量などの問題もあり、卵実験を一定化するのにはかなり困難さが伴うと考えられた。

消石灰に比べては3.4%、ロ紙法では36.7%の死亡率を示したが、元気に動き回っているワクモが83.7%、82.8%と多かった。

おわりに

500倍に栽培したワクモを探して、ワクモの巣を用いて、卵実験を実施した。卵実験は、同一巣内で大きく結果を異なるものであった。これら巣を実験農場で使用した場合、放牧量やケージなどに付着する量などの問題もあり、卵実験を一定化するのにはかなり困難さが伴うと考えられた。

500倍に栽培したワクモを探して、ワクモの巣を用いて、卵実験を実施した。卵実験は、同一巣内で大きく結果を異なるものであった。これら巣を実験農場で使用した場合、放牧量やケージなどに付着する量などの問題もあり、卵実験を一定化するのにはかなり困難さが伴うと考えられた。

500倍に栽培したワクモを探して、ワクモの巣を用いて、卵実験を実施した。卵実験は、同一巣内で大きく結果を異なるものであった。これら巣を実験農場で使用した場合、放牧量やケージなどに付着する量などの問題もあり、卵実験を一定化するのにはかなり困難さが伴うと考えられた。

500倍に栽培したワクモを探して、ワクモの巣を用いて、卵実験を実施した。卵実験は、同一巣内で大きく結果を異なるものであった。これら巣を実験農場で使用した場合、放牧量やケージなどに付着する量などの問題もあり、卵実験を一定化するのにはかなり困難さが伴うと考えられた。

500倍に栽培したワクモを探して、ワクモの巣を用いて、卵実験を実施した。卵実験は、同一巣内で大きく結果を異なるものであった。これら巣を実験農場で使用した場合、放牧量やケージなどに付着する量などの問題もあり、卵実験を一定化するのにはかなり困難さが伴うと考えられた。
Red Mite (*Dermanyssus gallinae*) : Current Problem and Trials for Control in Japan

Takako Murano
Chiba Prefectural Livestock Research Center,
He 16-1 Yachimata, Yachimata, Chiba, 289-1113

Summary

The prevalence of the red mite (*Dermanyssus gallinae*) in egg-laying fowl in Japan was as high as 85.2%. It was found that the red mite causes dirty eggs due to the adhesion of excretion or blood from squashed mites, harm to humans, an adverse effect on egg production rates, anemia in chickens, and chicken deaths. Furthermore, the eggs laid by red-mite infested chickens exhibited a decrease in weight, a reduction in houmunit, and thick albumin. The red mite has been developing resistance to the majority of commercially available pesticides that were designed to kill it. The authors attempted several currently available methods for preventing and eliminating the red mite. A water temperature of 65°C or higher killed red mites instantly. After 24-hour formalin fumigation, the mortality rate of the red mite was 34.8 to 62.2%, and over 90% of eggs hatched. The extermination of the red mite by environmental control materials exhibited very different results depending on the materials used. Over the past few years, red mite resistance to commercial pesticides has been increasing in Japan. The early development of new extermination methods, including pesticides, is strongly desired.

Key words: red mite (*Dermanyssus gallinae*), prevalence, damage, control