スプラウト(発芽野菜)に適するだったんそば品種「北海T9号」、「北海T10号」の育成

<table>
<thead>
<tr>
<th>誌名</th>
<th>北海道農業研究センター研究報告 = Research bulletin of the National Agricultural Research Center for Hokkaido Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSN</td>
<td>13478117</td>
</tr>
<tr>
<td>著者</td>
<td>鈴木, 達郎、木村, 正義、川勝, 正夫、中司, 啓二、金, 善州、六笠, 裕治、横田, 聡、山内, 宏昭、瀧川, 重信、野田, 高弘、橋本, 直人、遠藤, 千絵</td>
</tr>
<tr>
<td>巻/号</td>
<td>188号</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 45-53</td>
</tr>
<tr>
<td>発行年月</td>
<td>2008年3月</td>
</tr>
</tbody>
</table>
スプラウト（発芽野菜）に適するだったんそば品種
「北海T9号」、「北海T10号」の育成

鈴木 達郎1）、木村 正義2）、川勝 正夫2）、中司 啓二3）、金 善州4）、
六笠 裕治5）、横田 聡5）、山内 宏昭6）、瀧川 重信7）、野田 高弘1）、
橋本 直人1）、遠藤 千絵5）

I. 緒 言
近年スプラウト（発芽野菜）が注目されている。スプラウトは、概して成熟した野菜より機能性物質を多く含む。だったんそばのスプラウトや乾燥粉末（主に青汁用途）は、普通そばのスプラウトと比べ機能性成分のルチン（毛細血管強化、抗酸化能等の機能を持つフラボノイドの一種）を数倍多く含むことから（Kim et al. 2006）新たな機能性野菜として注目されている。現在、国内で消費されるだったんそばの多くは中国からの輸入品だが、現地での乾燥調製が不十分なため、種子の発芽率が悪いうえ生育が不均一である。また、中国産玄そばの高騰もあり、実需者はスプラウトに適する国産だったんそば種子の安定供給を求めている。国産のだったんそば品種としては2006年に品種登録され、2007年に北海道の優良品種に認定された「北海T8号」（中司ら 2001、本田ら 2007）等があるが、スプラウトの胚軸が普通そばに比べ細いため（第1図）、より太いものが求められている。また、カイワレダイコンやブロッコリー等多くのスプラウトは緑色であるため、赤色など特徴的な色を持つスプラウトが求められている。このような背景をうえ、独立行政法人農業・食品産業技術総合研究機構北海道農業研究センターではスプラウト用だったんそば品種「北海T9号」、「北海T10号」を育成した（第1図）。そこで、本品種の育成経過、特性概要等の試験成績を報告する。「北海T9号」、「北海T10号」の育成にあたっては、（株）北海道海洋牧場、「北海道海洋牧場」、「北海道海洋牧場」、「北海道海洋牧場」、「北海道海洋牧場」の関係者から多大な協力をいただいた。また、「北海T9号」、「北海T10号」の育成は、都市エリア産学官連携促進事業（十勝エリア）の課題の一部としても取り組まれた。

II. 育種目標と育成経過
従来だったんそば品種のスプラウトより、「胚軸が太い」、「胚軸・子葉が赤色」、「ルチン含量が多い」等の形質を持つ品種の育成を目標とした。
だったんそば「北海T9号」は、旧農林水産省北海道農業試験場畑作部産業資源研究室（現独立行政法人農業・食品産業技術総合研究機構北海道農業研究センター）機能性利用研究北海道サブチーム）において、北海道農業試験場旧農林水産省東北農業試験場（現独立行政法人農業・食品産業技術総合研究機構東北農業研究センター）から導入した「霧島種」を、寒地に適しただったんそばの育成を目的としてルチン処理により作出した4倍体系統からの選抜により育成したものである（第1表）。

平成20年1月10日原稿受理
1）現 機能性利用研究北海道サブチーム
2）前 北海道農業試験場畑作部産業資源研究室（退職）
3）現 北海道畑作部研究チーム
4）Metabolic Engineering Division, Department of Molecular Physiology and Biochemistry, National Institute of Agricultural Biotechnology, Republic of Korea
5）現 実地栽培品種研究チーム
6）現 パン用小麦研究チーム
7）現 野菜・茶機能性研究チーム 特命チーム員
第1図「北海T9号」、「北海T10号」のスプラウト、乾燥粉末の概観

第1表「北海T9号」の選抜経過

<table>
<thead>
<tr>
<th>年度・世代</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>選抜方法</td>
<td>個体選抜</td>
<td>系統選抜</td>
<td></td>
</tr>
<tr>
<td>選抜個体数</td>
<td>KU (172株)</td>
<td>29個体</td>
<td></td>
</tr>
<tr>
<td>検査品種</td>
<td>12種</td>
<td>3系統</td>
<td>5系統</td>
<td>5系統</td>
<td>5系統</td>
<td>5系統</td>
<td>2系統</td>
<td>1系統</td>
<td>1系統</td>
<td>1系統</td>
<td>1系統</td>
<td>北海T9号と命名</td>
<td></td>
</tr>
</tbody>
</table>

第2表「北海T10号」の選抜経過

<table>
<thead>
<tr>
<th>年度・世代</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>選抜方法</td>
<td>個体選抜</td>
<td></td>
</tr>
<tr>
<td>茎収個体数</td>
<td>EMS管理個体</td>
<td>400個体</td>
<td></td>
</tr>
<tr>
<td>検査個体数</td>
<td>960個体</td>
<td></td>
</tr>
<tr>
<td>バルク採取</td>
<td>約2600粒</td>
<td></td>
</tr>
<tr>
<td>バルク採取</td>
<td>約9000粒</td>
<td></td>
</tr>
<tr>
<td>選抜個体数</td>
<td>1個体 (赤色)</td>
<td>1系統</td>
<td>1系統</td>
<td>1系統</td>
<td>1系統</td>
<td>北海T10号と命名</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

標に3系統を選抜しMT3-4n1～MT3-4n3の系統番号を付した。平成6年、新たに選抜した系統を含め5系統を、子実収量・大粒性を目標に選抜し、MK11.17.19.21の系統名を付した。平成9年に、3年間行った生産力検定育種試験の結果により、5系統から子実収量・大粒性を基準に1系統「MK11」を選抜し、「北海9号」の系統名を付した。平成10年から2年間の生産力検定試験（識別）を行った結果、「北海9号」の成績が優れていたため、平成15年より芽室にて生産力検定試験を継続し、平成17年に「北海T9号」の系統名を付した。その後、平成19年10月に品種登録出願受理された。

だったんぼ「北海T10号」は、独立行政法人農業・食品産業技術総合研究機構北海道農業研究センター機能性利用研究北海道サブチームにおいて、独立行政法人農業・食品産業技術総合研究機構北海道農業研究センターが育成した「北海T8号」から、スプラウトに適しただけんばの育成を目的として、化学変異処理を施し突然変異を誘発した個体からの選抜により育成したものである（第2表)。
３．特性の概要

１．形態的特性

「北海 T 9号」の草型は、「直立・短枝」で、草丈及び主茎長は「北海 T8号」よりも低く“やや短”で主茎節数は“中”、分枝数は“やや少”である。茎の太さは“やや細”である（第3表）。

「北海 T10号」の草型は、“直立・短枝”で、草丈及び主茎長は「北海 T9号」よりも低く“やや短”で主茎節数は“中”、分枝数は“やや少”である。茎の太さは“やや細”で中なら滋密で（第3表）。

平成12年にメタノール酸エチル(EMS)処理した「北海 T8号」の種子を播種し、バーチ採種した約2600粒から400粒を播種し、約9000粒をバーチ収穫した。平成13年には960粒を播種し、幼植物の子葉・胚軸の赤色を基準に1個体を選抜し「EMSR」の系統名を付した。平成15年に2年間行った特性調査の結果、幼植物の赤色を測定し、系統名を付した。平成16年から芽と子実種を検定試験・現地試験を行い、平成17年に「北海 T10号」の系統名を付した。その後平成19年10月に品種登録出願受理された。

２．生態的特性

「北海 T 9号」の開花期は「北海 T 8号」と同じく“中”であり、成熟期は「北海 T 8号」よりやや遅い“やや遅”である。子実の収量は「北海 T 8号」よりもかなり多い“かなり少”である。耐倒伏性は「北海 T 8号」よりも強い“強”である。脱粒の難易は“中”である（第4表）。

「北海 T 10号」の開花期、成熟期は、「北海 T 8号」と同じく“中”である。子実の収量は「北海 T 8号」よりも極めて少ない“極少”である。耐倒伏性は「北海 T 8号」と同程度の“やや強”である。脱粒の難易は“中”である（第4表）。

３．品質特性

「北海 T 9号」の粒形は“平滑形”であり、千
第5表 [北海T9号]、「北海T10号」の品質特性

<table>
<thead>
<tr>
<th>品種・系統名</th>
<th>粒形</th>
<th>果皮色</th>
<th>子実</th>
<th>子実容積重</th>
<th>製粉歩留り</th>
<th>肉食</th>
<th>苦味</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海T9号</td>
<td>平滑形</td>
<td>濃褐色</td>
<td>やや大</td>
<td>小</td>
<td>中</td>
<td>低</td>
<td>中</td>
</tr>
<tr>
<td>北海T10号</td>
<td>平滑形</td>
<td>深褐色</td>
<td>やや小</td>
<td>中</td>
<td>低</td>
<td>中</td>
<td>中</td>
</tr>
<tr>
<td>北海T8号（標準）</td>
<td>平滑形</td>
<td>深褐色</td>
<td>中</td>
<td>やや小</td>
<td>中</td>
<td>低</td>
<td>中</td>
</tr>
<tr>
<td>道南産（比較）</td>
<td>平滑形</td>
<td>深褐色</td>
<td>中</td>
<td>中</td>
<td>中</td>
<td>中</td>
<td>中</td>
</tr>
</tbody>
</table>

第6表 生産力検定試験における生育及び収量調査結果

品種・系統名	試験区別	試験年次	開花期	成熟期	草丈	分枝数	花枝数	100個平均粒重	粒重	同左比 (%)	子実成熟度	子実容積重	製粉歩留り	含量 (%)										
	(日)	(月)	(月)	(月)	(c m)	(本/株)	(個/株)	(無:0～5)	(kg/100)	(kg/10a)	(kg/10a)	(g/L)												
北海T9号	早	15	6	5	19	7	9	8	5	122	4.1	26.0	6.0	-	0.7	528	143	128	56	21.3	511	38.3	870	
	普	16	6	5	24	7	15	8	20	109	2.5	16.9	0.1	0.3	0.8	453	125	98	77	23.0	589	39.8	688	
北海T10号	早	15	6	5	19	7	9	8	5	119	3.1	22.0	0.7	0.2	1.2	551	149	96	65	22.0	549	41.0	1,062	
	普	15	6	5	19	7	9	8	5	117	2.4	15.8	0.7	0.2	1.2	381	133	119	52	15.9	568	52.6	594	
北海T8号（標準）	早	15	6	5	19	7	11	8	16	153	2.4	22.8	2.4	0.2	2.4	380	144	80	65	17.4	583	55.3	1,036	
	普	15	6	5	19	7	14	8	18	117	2.4	15.8	2.4	1.7	0.3	212	52	41	32	19.6	615	55.2	563	
道南産（比較）	早	15	6	5	19	7	9	8	5	153	2.4	22.8	5.0	-	2.9	698	219	206	91	16.1	640	51.6	643	
	普	15	6	5	19	7	11	8	17	190	3.6	25.0	5.0	1.0	3.8	450	146	128	100	19.1	668	59.4	810	
北海T9号	早	15	6	6	7	7	21	9	10	143	5.0	44.2	2.0	-	12.7	292	44	121	70	17.2	642	53.6	642	
	普	15	6	6	7	7	13	8	17	159	3.3	27.5	5.0	1.0	8.5	700	124	122	100	19.0	667	58.8	1,170	
北海T8号（標準）	早	15	6	6	7	7	21	9	11	130	1.8	16.7	4.7	0.3	0.6	450	146	128	100	19.1	668	59.4	810	
	普	15	6	6	7	7	14	8	17	130	1.8	16.7	4.7	0.3	0.6	450	146	128	100	19.1	668	59.4	810	
道南産（比較）	早	15	6	6	7	7	21	9	8	5	153	2.4	22.8	5.0	-	2.9	698	219	206	91	16.1	640	51.6	643
	普	15	6	6	7	7	11	8	17	190	3.6	25.0	5.0	1.0	3.8	450	146	128	100	19.1	668	59.4	810	
北海T9号	早	15	6	6	7	7	19	9	3	167	5.0	44.2	2.0	0.4	0.2	224	43	39	39	16.0	523	48.5	844	
	普	15	6	6	7	7	24	8	23	143	3.5	25.9	3.0	0.2	1.2	339	44	20	20	16.7	574	52.8	1,072	
北海T8号（標準）	早	15	6	6	7	7	21	9	1	108	2.6	25.0	2.0	2.3	0.3	224	21	17	17	19.5	667	36.7	377	
	普	15	6	6	7	7	22	8	29	139	3.5	31.0	4.9	1.5	10.6	497	154	100	100	18.6	649	54.3	819	
道南産（比較）	早	15	6	6	7	7	21	9	3	193	3.7	67.9	5.0	1.0	1.9	406	114	102	102	16.8	651	49.3	804	
	普	15	6	6	7	7	23	8	23	207	5.7	70.9	5.0	2.0	0.3	689	120	53	53	16.4	647	55.8	1,432	

注：調査せず。平均値、標準比が一致しないものはラウンドによる。以下同様。

4. 収量性

1）育成地における成績

育成地における「北海T9号」の子実重は、各播種区「北海T8号」比、早播で65％、標準播で54％とかなり少なく、早播では標準播に比べ84kg/10aから149kg/10aと増収した。「北海T8号」比は54％から64％へ増加した（第6表）。子実ルチン含量は、「北海T8号」に比べ「北海T9号」が多かっ
第7表 播種量試験における生及び収量調査結果

<table>
<thead>
<tr>
<th>品種・系統名</th>
<th>播種年</th>
<th>播種数</th>
<th>花開数</th>
<th>成熟数</th>
<th>年数</th>
<th>仏歯数</th>
<th>仏歯数</th>
<th>分花数</th>
<th>倒伏度</th>
<th>根茎重</th>
<th>子実重</th>
<th>同左比（％）</th>
<th>千粒重</th>
<th>積重</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(月日)</td>
<td>(月日)</td>
<td>(月日)</td>
<td>(c m)</td>
<td>(株/</td>
<td>(個/</td>
<td>(無:</td>
<td>(kg/</td>
<td>(kg/</td>
<td>(g)</td>
<td>(g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(株)</td>
<td>(株)</td>
<td>(株)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(10a)</td>
<td>(10a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>種植</td>
<td>6.3</td>
<td>7.23</td>
<td>8.23</td>
<td>181</td>
<td>4.9</td>
<td>94.3</td>
<td>2.0</td>
<td>628</td>
<td>99</td>
<td>53</td>
<td>90</td>
<td>19.4</td>
<td>542</td>
<td></td>
</tr>
<tr>
<td>北海T9号標</td>
<td>6.3</td>
<td>7.23</td>
<td>8.23</td>
<td>168</td>
<td>5.6</td>
<td>76.3</td>
<td>3.0</td>
<td>681</td>
<td>110</td>
<td>59</td>
<td>100</td>
<td>19.3</td>
<td>555</td>
<td></td>
</tr>
<tr>
<td>標 植</td>
<td>6.3</td>
<td>7.23</td>
<td>8.23</td>
<td>166</td>
<td>4.8</td>
<td>72.4</td>
<td>5.0</td>
<td>601</td>
<td>104</td>
<td>56</td>
<td>95</td>
<td>19.2</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>北海T8号標</td>
<td>6.3</td>
<td>7.23</td>
<td>8.23</td>
<td>175</td>
<td>4.9</td>
<td>65.7</td>
<td>2.0</td>
<td>336</td>
<td>38</td>
<td>20</td>
<td>80</td>
<td>17.3</td>
<td>566</td>
<td></td>
</tr>
<tr>
<td>標 植</td>
<td>6.3</td>
<td>7.23</td>
<td>8.23</td>
<td>174</td>
<td>4.9</td>
<td>60.3</td>
<td>2.0</td>
<td>376</td>
<td>47</td>
<td>25</td>
<td>100</td>
<td>17.5</td>
<td>581</td>
<td></td>
</tr>
<tr>
<td>北海T8号 （標準）</td>
<td>6.3</td>
<td>7.23</td>
<td>8.23</td>
<td>198</td>
<td>4.2</td>
<td>47.6</td>
<td>5.0</td>
<td>622</td>
<td>188</td>
<td>100</td>
<td>100</td>
<td>18.2</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>標 植</td>
<td>6.3</td>
<td>7.23</td>
<td>8.23</td>
<td>196</td>
<td>4.9</td>
<td>58.3</td>
<td>5.0</td>
<td>668</td>
<td>198</td>
<td>106</td>
<td>106</td>
<td>18.3</td>
<td>659</td>
<td></td>
</tr>
</tbody>
</table>

注) 播種量（種植：100粒/㎡、標準：150粒/㎡、密植：200粒/㎡）

第8表 施肥量試験における生育及び収量調査結果

<table>
<thead>
<tr>
<th>品種・系統名</th>
<th>播種年</th>
<th>播種数</th>
<th>花開数</th>
<th>成熟数</th>
<th>年数</th>
<th>仏歯数</th>
<th>仏歯数</th>
<th>分花数</th>
<th>倒伏度</th>
<th>根茎重</th>
<th>子実重</th>
<th>同左比（％）</th>
<th>千粒重</th>
<th>積重</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(月日)</td>
<td>(月日)</td>
<td>(月日)</td>
<td>(c m)</td>
<td>(株/</td>
<td>(個/</td>
<td>(無:</td>
<td>(kg/</td>
<td>(kg/</td>
<td>(g)</td>
<td>(g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(株)</td>
<td>(株)</td>
<td>(株)</td>
<td></td>
<td>(株)</td>
<td></td>
<td></td>
<td>(10a)</td>
<td>(10a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>北海T10号標</td>
<td>185.24</td>
<td>7.24</td>
<td>8.24</td>
<td>118</td>
<td>2.0</td>
<td>12.6</td>
<td>2.2</td>
<td>347</td>
<td>51</td>
<td>43</td>
<td>35</td>
<td>18.8</td>
<td>636</td>
<td></td>
</tr>
<tr>
<td>標 植</td>
<td>185.24</td>
<td>7.24</td>
<td>8.24</td>
<td>138</td>
<td>2.2</td>
<td>14.3</td>
<td>4.3</td>
<td>472</td>
<td>108</td>
<td>91</td>
<td>75</td>
<td>19.0</td>
<td>602</td>
<td></td>
</tr>
<tr>
<td>北海T8号標</td>
<td>185.24</td>
<td>7.15</td>
<td>8.20</td>
<td>201</td>
<td>4.1</td>
<td>58.3</td>
<td>5.0</td>
<td>692</td>
<td>221</td>
<td>118</td>
<td>118</td>
<td>18.5</td>
<td>664</td>
<td></td>
</tr>
<tr>
<td>標 植</td>
<td>185.24</td>
<td>7.24</td>
<td>8.24</td>
<td>160</td>
<td>2.0</td>
<td>14.4</td>
<td>5.0</td>
<td>622</td>
<td>188</td>
<td>100</td>
<td>100</td>
<td>18.2</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>北海T8号 （標準）</td>
<td>185.24</td>
<td>7.24</td>
<td>8.24</td>
<td>160</td>
<td>2.0</td>
<td>14.4</td>
<td>5.0</td>
<td>668</td>
<td>198</td>
<td>106</td>
<td>106</td>
<td>18.3</td>
<td>659</td>
<td></td>
</tr>
<tr>
<td>標 植</td>
<td>185.24</td>
<td>7.24</td>
<td>8.24</td>
<td>160</td>
<td>2.0</td>
<td>14.4</td>
<td>5.0</td>
<td>668</td>
<td>198</td>
<td>106</td>
<td>106</td>
<td>18.3</td>
<td>659</td>
<td></td>
</tr>
</tbody>
</table>

注) 施肥量：多肥は基肥の2倍（3.6kgN/10a）

た（第6表）。

「北海 T10号」の子実重は、各播種期「北海 T8号」比、早播で39％、標準播では24％、と極めて少なかったが、標準播に比べ早播では36kg/10aから90kg/10aと増収した（「北海 T8号」比は24％から39％へ増加した）（第6表）。
第9表 雄武町における生育及び収量調査結果

<table>
<thead>
<tr>
<th>品種・系統名</th>
<th>除草剤</th>
<th>播種</th>
<th>成熟</th>
<th>草丈</th>
<th>分枝数</th>
<th>花序数</th>
<th>倒伏</th>
<th>病害</th>
<th>重量</th>
<th>開放</th>
<th>子実</th>
<th>千粒重</th>
<th>容積</th>
<th>製粉歩留り</th>
<th>粒子</th>
<th>子実ルチン含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>(月日)</td>
<td>(10a)</td>
<td>(m)</td>
<td>(株)</td>
<td>(株)</td>
<td>本</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(g)</td>
<td>(g/L)</td>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>雄武アグリファーム</td>
<td>北海T9号</td>
<td>平18</td>
<td>9.9</td>
<td>6</td>
<td>31</td>
<td>16.3</td>
<td>0.0</td>
<td>1.0</td>
<td>461</td>
<td>77</td>
<td>22</td>
<td>585</td>
<td>35.7</td>
<td>536</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>北海T10号</td>
<td>平18</td>
<td>9.9</td>
<td>6</td>
<td>31</td>
<td>29.3</td>
<td>0.3</td>
<td>2.5</td>
<td>269</td>
<td>36</td>
<td>38</td>
<td>19</td>
<td>643</td>
<td>53.0</td>
<td>496</td>
<td></td>
</tr>
<tr>
<td></td>
<td>北海T8号</td>
<td>平18</td>
<td>9.9</td>
<td>6</td>
<td>31</td>
<td>19.6</td>
<td>2.4</td>
<td>2.5</td>
<td>505</td>
<td>62</td>
<td>64</td>
<td>20</td>
<td>606</td>
<td>53.5</td>
<td>491</td>
<td></td>
</tr>
</tbody>
</table>

表10表 スプラウト生産業者における試験結果

<table>
<thead>
<tr>
<th></th>
<th>概観</th>
<th>補栄養率</th>
<th>草高</th>
<th>補栄養の太さ</th>
<th>カビ発生程度*1</th>
<th>スプラウトルチン</th>
<th>アントシアニン</th>
<th>乾燥粉末ルチン</th>
<th>アントシアニン</th>
<th>時率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(悪: 0~良: 5)</td>
<td>(%)</td>
<td>(cm)</td>
<td>(mm)</td>
<td>(無: 0~茎: 5)</td>
<td>(g)</td>
<td>(mg/100gFW)</td>
<td>(g)</td>
<td>(mg/100gFW)</td>
<td>(g)</td>
</tr>
<tr>
<td>北海T9号</td>
<td>平17</td>
<td>3.0</td>
<td>2.3</td>
<td>11.9</td>
<td>12.5</td>
<td>0.0</td>
<td>426</td>
<td>0.57</td>
<td>6.08</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>平18</td>
<td>4.0</td>
<td>2.0</td>
<td>9.6</td>
<td>1.15</td>
<td>0.0</td>
<td>286</td>
<td>0.77</td>
<td>4.09</td>
<td>0.01</td>
</tr>
<tr>
<td>平均</td>
<td>3.5</td>
<td>2.2</td>
<td>10.8</td>
<td>1.38</td>
<td>0.0</td>
<td>356</td>
<td>0.67</td>
<td>5.08</td>
<td>0.01</td>
<td>8.3</td>
</tr>
<tr>
<td>北海T10号</td>
<td>平17</td>
<td>3.5</td>
<td>12.8</td>
<td>11.2</td>
<td>0.90</td>
<td>4.0</td>
<td>520</td>
<td>39.20</td>
<td>7.43</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>平18</td>
<td>5.0</td>
<td>6.7</td>
<td>10.6</td>
<td>1.01</td>
<td>4.0</td>
<td>413</td>
<td>46.90</td>
<td>5.90</td>
<td>0.67</td>
</tr>
<tr>
<td>平均</td>
<td>4.3</td>
<td>9.7</td>
<td>10.9</td>
<td>0.96</td>
<td>4.0</td>
<td>467</td>
<td>43.05</td>
<td>6.66</td>
<td>0.62</td>
<td>6.6</td>
</tr>
<tr>
<td>北海T8号</td>
<td>平17</td>
<td>3.0</td>
<td>13.9</td>
<td>11.9</td>
<td>0.88</td>
<td>3.0</td>
<td>322</td>
<td>1.05</td>
<td>4.60</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>平18</td>
<td>3.0</td>
<td>7.3</td>
<td>10.1</td>
<td>1.02</td>
<td>3.0</td>
<td>210</td>
<td>1.26</td>
<td>2.99</td>
<td>0.02</td>
</tr>
<tr>
<td>平均</td>
<td>3.0</td>
<td>10.6</td>
<td>11.0</td>
<td>0.95</td>
<td>3.0</td>
<td>266</td>
<td>1.16</td>
<td>3.80</td>
<td>0.02</td>
<td>5.6</td>
</tr>
<tr>
<td>北海T8号 (標準)</td>
<td>平17</td>
<td>3.0</td>
<td>1.8</td>
<td>13.1</td>
<td>1.37</td>
<td>3.0</td>
<td>37</td>
<td>1.40</td>
<td>0.53</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>平18</td>
<td>2.5</td>
<td>1.3</td>
<td>11.6</td>
<td>1.42</td>
<td>3.0</td>
<td>56</td>
<td>2.38</td>
<td>0.80</td>
<td>0.03</td>
</tr>
<tr>
<td>普通そば</td>
<td>平均</td>
<td>2.8</td>
<td>1.6</td>
<td>12.4</td>
<td>1.40</td>
<td>3.0</td>
<td>47</td>
<td>1.89</td>
<td>0.66</td>
<td>0.03</td>
</tr>
</tbody>
</table>

*1: 補栄養を5C保存。6日目におけるカビ発生程度。
*2: 乾燥粉末ルチンに対するスプラウト可食用新鮮重の割合

播種量試験の結果、「北海T9号」、「北海T10号」とともに密度により草丈が低くなる傾向にあったが、収量効果は認められなかった（第7表）。

施肥量試験の結果、「北海T9号」は多肥による増収効果は認められなかった（第8表）。「北海T10号」は多肥で増収したが、標肥の「北海T8号」と比べ標準で29％、早播（平18のみ）で75％と極めて少なかったが、標準播において標肥と比べ多肥では24kg/10aから46kg/10aと増収した（「北海T8号」比は15％から29％へ増加した）（第8表）。さらに単年度の試験ではあるが、「北海T10号」の子実重は5月下旬播種・多肥区において、6月上旬播種・標肥区の「北海T8号」比75％と増加した（第8表）。

2）雄武町における成績

実栽培が予定されている雄武町における「北海T9号」の子実重は、「北海T8号」に比べ79％となり少なかった（第8表）。「北海T10号」の子実重は、「北海T8号」に比べ38％と極めて少なかったが、標肥と比べ多肥では36kg/10aから62kg/10aと増収した（「北海T8号」比は38％から64％へ増加した）（第8表）。

5. スプラウト適性

スプラウト、スプラウトの凍結乾燥粉末の実生産を予定している業者における試験の結果、「北海T9号」のスプラウトは「北海T8号」より胚軸が太く見栄えがよく、またルチン含量が約1.3倍高かった（第10表）。 「北海T10号」のスプラウトは「北海T8号」より胚軸が太く見栄えがよく、またルチン含量が約1.7倍高かった（第10表）。乾燥粉末についても同様の結果であった。

IV. 議論

「北海T9号」、「北海T10号」は、スプラウトに適するたんそば品種の開発を目的に育成された。従来のたんそば品種は普通そばのスプラウトに比べ胚軸が細いため外観に劣ることが問題であった。「北海T9号」のスプレトンの胚軸は普通そばと同程度に太い。それには倍数性が関係していると考えられる。現在栽培されているたんそばのほとんどは2倍体であるが、「北海T9号」は4倍体であり千粒重が大きい（第5表、第6表）。また、4倍体になったことで、細胞が大型化したこともあり、結果として胚軸が太くなった可能性が考えられる。

また、カイワレダイコンやブロッコリーをはじめ多くのスプラウトは緑色であることから赤色など特徴的な色を持つスプラウトが求められている。「北海T10号」のスプラウトは鮮やかな赤色であるため、彩りの面から新たなスプラウトとして有望である。

「北海T10号」が含むアントシアニンは、アセロラや紫トウモロコシに含まれるアントシアニンと同様の構造を持つ（Kim et al. 2007）。それらのアントシアニンはin vitroで抗酸化能やガム細胞の伸長抑制等の機能を持つとする報告がなされている（Chen et al. 2006）。今後は「北海T10号」のアントシアニンの機能性に関する研究を進める必要がある。

たんそばスプラウトを代表する機能性物質であるルチンの含量は、「北海T8号」のスプラウトに比べ、「北海T9号」は1.3倍、「北海T10号」は1.7倍多い。ダッタンソバ種子のルチン含量とスプラウトのルチン含量を比較すると、乾物あたりのルチン含量はスプラウトの方が数倍多い。このことから、ダッタンソバは発芽後、スプラウトの生育過程でルチンを盛んに合成・蓄積していると考えられる。子実におけるルチン含量は、育成地の場合「北海T9号」が最も多く、次いで「北海T8号」、「北海T10号」の順である（第6表）。スプラウトにおいては、「北海T10号」が最も多く、次いで「北海T9号」、「北海T8号」の順である（第10表）。これは「北海T9号」、「北海T10号」のスプラウトが発芽後の生育過程において、「北海T8号」のスプラウトよりもルチンを合成・蓄積する能力が高いと考えられる。

また、スプラウトのルチン含量が年次で異なる（第10表）、それはダッタンソバスプラウトのルチン蓄積量が光条件により変動する（Kim et al. 2006）現象と関係あるかもしれない。

スプラウトや乾燥粉末は、麺利用と比べ加価値率（最終製品販売価格を玄そば価格で除算したもの）が非常に高い。通常のそば類の場合付加価値率はおよそ8〜16倍程度であるが、スプラウトの場合はおよそ30倍、乾燥粉末でおよそ41倍となる。そのため、採種性の悪さをカバーすることが可能である。増収のための播種時期や施肥量等の詳細な検討と同時に、育種により採種性の改善を行う必要がある。また、よりスプラウト適性のある品種としては、スプラウトが赤色で胚軸が長い形質、スプラウト生産時に越離れの良い形質、収穫日の降雨に遭遇しても発芽しない形質等が必要である。

近年、高齢化社会問題や医療財政問題の深刻化から、従来の治療薬物の発見に加え予防医薬の重点化が急務となっている。予防医薬に対し食品の機能性が果たす役割は極めて大きい。たんそばスプラウトはルチン等の機能性物質を豊富に含有するからその機能性に期待が集まっている。最近の研究で、ラット試験においてルチンが脂質代謝改善効果を持つことが報告されている（曲ら 2007）。また、同じくラット試験においてたんそばスプラウト乾燥粉末の摂取による脂質代謝改善効果（Kuwabara et al. 2007）が報告されている。今後はたんそばスプラウトの機能性を科学的に十分裏付けるためにさらなる研究が必要である。

道内において「たんそばスプラウト用種子の生産」～「スプラウト・乾燥粉末（青汁）等の最終製品生産」～「販売」の体制が整いつつある。今後市場が拡大すれば地域産業活性化に貢献すると考えられ、スプラウト・乾燥粉末により適する新種品育成や製品開発を急ぐ必要がある。
V. 栽培上の注意
1) 「北海T 9号」、「北海T 10号」は普通そばとは異なりながら、後作が普通そばの場合、野良生えにより種子が混入するので後作物の選定に注意する。
2) 「北海T 9号」、「北海T 10号」は「北海T 8号」と同程度に脱粒しやすいので、適期収穫に努める。
3) 「北海T 10号」を多肥により増収するが倒伏するので、栽培地に適する施用量を検討する。
4) 「北海T 9号」、「北海T 10号」密植により倒伏するので、適正播種量に努める。

VI. 引用文献
中司啓二、木村正義、川勝正夫、本田裕、鎌木達郎 (2001)：だったんそば新品种「北系1号」の特性。北農 第68巻 第4号
田本裕、六笠裕治、鎌木達郎、横田聡、我妻正迪、中司啓二、木村正義、川勝正夫 (2007)：安定多収で、麺、茶に加工適正のあるだったんそば新品种候補「北海T 8号」。北海道農業試験研究推進会議 研究成果情報、90-91。
曲由、安田隆俊、中島幸次、橋渡啓十、諸井千春、江頭祐嘉、真田宏夫 (2007)：ルチン添加麺の脂質代謝改善作用に関する研究。日本栄養・食糧学会 第61回講演要旨集 P.93。

“Hokkai T9” and “Hokkai T10”: new tartary buckwheat varieties for sprouts and dried powders

Tatsuro SUZUKI1), Masayoshi KIMURA2), Masao KAWAKATSU2), Keiji NAKATSUKA3), Sun-Ju KIM4), Yuji MUKASA5), Satoshi YOKOTA5), Hiroaki YAMAUCHI6), Shigenobu TAKIGAWA7), Takahiro NODA1), Naoto HASHIMOTO1), and Chie MATSUURA-ENDO5)

Summary

“Hokkai T9” and “Hokkai T10” are new Tartary buckwheat varieties developed at the National Agricultural Research Center for Hokkaido Region and were released in October 2007. They were developed for the production of sprouts or dried sprout powder such as “Ao-Jiru juice”. “Hokkai T9” was developed by selection from “Dattan-shu” treated with colchicine and has a thick hypocotyl. “Hokkai T10” was developed from a mutant of “Hokkai T8” treated with ethyl methane sulfonate (EMS) and has a red hypocotyl and cotyledon during the early sprout development stage. Rutin concentrations of “Hokkai T9” and “Hokkai T10” were 1.3- and 1.7- times higher than that of “Hokkai T8”, respectively. Seed yields of “Hokkai T9” and “Hokkai T10” were much lower than that of “Hokkai T8”. “Hokkai T9” and “Hokkai T10” are suitable for high value-added products such as sprouts or dried sprout powder such as “Ao-Jiru juice”.

1) Crop Functionality and Utilization Research Subteam (Hokkaido Region)
2) Retired
3) Lowland Crop Rotation Research Team (Hokkaido Region)
4) Metabolic Engineering Division, Department of Molecular Physiology and Biochemistry, National Institute of Agricultural Biotechnology, Republic of Korea
5) Local Crop Breeding Research Team (Hokkaido Region)
6) Bread wheat Research Team
7) Independent Researcher (Vegetable and Tea Function Research Team, Hokkaido Region)