早熟変態誘導活性を有する光学活性なエチル4-（2-ベンジルアルキルオキシ）ベンゾエート類の幼若ホルモン活性

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>誌名</td>
<td>Journal of pesticide science</td>
</tr>
<tr>
<td>ISSN</td>
<td>1348589X</td>
</tr>
<tr>
<td>巻/号</td>
<td>334</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 383-386</td>
</tr>
<tr>
<td>発行年月</td>
<td>2008年11月</td>
</tr>
</tbody>
</table>

農林水産省 農林水産技術会議事務局筑波産学連携支援センター
Tsukuba Business-Academia Cooperation Support Center, Agriculture, Forestry and Fisheries Research Council Secretariat
Juvenile hormone activity of optically active ethyl 4-(2-benzylalkyloxy)-benzoates inducing precocious metamorphosis

Norihiro Fujita, Kenjiro Furuta, Kiyo Ashibe, Shuhei Yoshida, Naotaka Yamada, Takahiro Shiotsuki, Makoto Kiuchi† and Eiichi Kuwano∗

Laboratory of Pesticide Chemistry, Department of Applied Genetics and Pest Management, Faculty of Agriculture, Kyushu University, Fukuoka 812–8581, Japan
†Invertebrate Gene Function Research Unit, National Institute of Agrobiological Science, Tsukuba, Ibaraki 305–8634, Japan
(Received June 25, 2008; Accepted July 17, 2008)

A series of ethyl 4-(2-benzylalkyloxy)benzoates possessing precocous metamorphosis-inducing activity showed juvenile hormone (JH) activity when topically applied to allatectomized 4th instar larvae of Bombyx mori. Hexyl (KF-13) and heptyl analogs, which induced precocuous metamorphosis at low doses, had relatively high JH activity. In both compounds, (S)-enantiomers were more active than (R)-enantiomers. A correlation was observed between JH activity and anti-JH activity in the ethyl 4-(2-benzylalkyloxy)benzoate series. Replacement of the 4-ethoxycarbonyl group with a 4-ethyl or 3,4-methylenedioxy group in KF-13 eliminated both JH and anti-JH activity. © Pesticide Science Society of Japan

Keywords: juvenile hormone, anti-juvenile hormone, precocious metamorphosis, silkworm.

Introduction

We have recently reported ethyl 4-(2-benzylhexyloxy)benzoate (KF-13) as a novel anti-juvenile hormone (JH) agent.† This compound induced precocious metamorphosis in larvae of the silkworm, Bombyx mori, a clear sign of JH deficiency, and its activity could be completely counteracted by the simultaneous application of methoprene, a JH agonist. KF-13 was designed by modifying the structure of ethyl 4-[2-(tert-butylcarbonyloxy)butyloxy]benzoate (ETB), which is the only compound that is reported to act as a partial JH antagonist in the larval epidermis of Manduca sexta in vitro.2) KF-13 and its analogs (1–3) showed stronger precocious metamorphosis-inducing activity than ETB (Fig. 1).1) ETB is known to show JH activity as well as anti-JH activity for M. sexta2b) and B. mori,6) depending on the dose applied; low doses of ETB induced precocious metamorphosis, but at higher doses precocious metamorphosis-inducing activity disappeared and instead, JH activity was observed. ETB as a JH agonist counteracted the effect of allatectomy, i.e., induction of precocious metamorphosis, in a dose-dependent manner.4) In our previous study, KF-13 as well as methoprene prolonged the duration of the instar and delayed the onset of cocoon spinning when applied to 24-hr-old 5th instar larvae, suggesting that KF-13 as well as ETB has JH-like activity.5) It has been reported that the JH and anti-JH activity of ETB in M. sexta larvae is entirely due to the (S)-enantiomer, the (R)-isomer being completely inactive.5) In the alkyl (2E,4E)-3,7,11-trimethyl-2,4-dodecadienoate series with JH activity, (S)-enantiomers have shown considerably higher activity on several insect species than (R)-enantiomers;6) therefore, we examined the JH activity of optically active KF-13 and its analogs by bioassay using allatectomized 4th instar larvae, which proved to be sensitive and satisfactory for the evaluation of JH activity.5) Moreover, the effect of the 4-ethoxycarbonyl group of KF-13 on JH activity was investigated.

Materials and Methods

1. Instrumental analysis

The 1H NMR spectra were determined with a JEOL EX-400 (400 MHz) spectrometer, using tetramethylsilane as an internal standard, and all samples were prepared in deuteriochloroform. Optical rotation values were measured with a Union Giken PM-101 polarimeter. HPLC analysis was carried out with a Shimadzu LC-10A equipped with a Shimadzu UV-VIS diode array.

2. Chemicals

Methoprene (93.4%) was kindly supplied by Earth Biochemical Co. Racemic 1–3, KF-13,† and ETB6) were synthesized according to the procedure reported previously. Enantiomers of KF-13 and the heptyl analog 2 were prepared using a chiral auxiliary oxazolidinone according to the process already described.1)

2.1. Ethyl 4-[(S)-2-benzylpentyloxy]benzoate (IS)

This compound was prepared in the same manner as ethyl 4-[(S)-2-benzylhexyloxy]benzoate (KF-13S) using n-pentanoyl chloride instead of n-hexanoyl chloride as a starting material. [α]D8) +43° (c 1, ethanol). Enantiomeric purity was 99% ee by HPLC analysis under the following conditions: column, CHIRALPAC OD-H (4.6×250 mm, Daicel Chemical Industry Co.); mobile phase, hexane-2-propanol (99:1); detection, UV 260 nm; flow rate, 1 ml/min.

Ethyl 4-[(R)-2-benzylpentyloxy]benzoate (1R) was prepared in the same manner as IS using (S)-4-benzyl-2-oxazolidinone in-
stead of (R)-isomer.

Compound 1R: \([\alpha]_D^{20} + 36^\circ\) (c 1, ethanol); enantiomeric purity, 98% ee. The \(^1\text{H}\) NMR spectra of 1S and 1R were fully consistent with that already reported for racemic mixture 1.

2.2 Ethyl 4-(S)-2-benzylhexyloxy]benzoate (3S) and its enantiomer (3R)

3S and 3R were prepared in the same manner as KF-13S and KF-13R, respectively, using n-octanoyl chloride instead of n-hexanoyl chloride.

Compound 3S: \([\alpha]_D^{20} + 35^\circ\) (c 1, ethanol), 90% ee.

Compound 3R: \([\alpha]_D^{20} - 48^\circ\) (c 1, ethanol), 95% ee. The \(^1\text{H}\) NMR spectra of 3S and 3R were completely consistent with that of 3.

2.3 2-Benzyl-1-(4-ethylphenoxy)hexane (4)

This compound was prepared in the same manner as KF-13 using 4-ethylphenol instead of ethyl 4-hydroxybenzoate as the starting material. \(^1\text{H}\) NMR \(\delta: 0.88\) (3H, t, \(J=7.3\) Hz, \(CH_3\)) 1.21 (3H, t, \(J=7.8\) Hz, \(CH_3\)), 1.22-1.54 (6H, m, \(3CH_2\)), 2.02-2.06 (1H, m, \(CH\)), 2.58 (2H, q, \(J=7.8\) Hz, \(CH_2\)), 2.68-2.81 (2H, m, \(CH_2\)), 3.73-3.79 (2H, m, \(CH_2\)), 6.80 (2H, d, \(J=8.3\) Hz, phenyl), 7.09 (2H, d, \(J=8.3\) Hz, phenyl), 7.15-7.20 (3H, m, phenyl), 7.24-7.29 (2H, m, phenyl).

2.4 5-(2-Benzilhexyloxy)1,3-benzodioxole (5)

This was similarly prepared from 3,4-methylenedioxybenzole. \(^1\text{H}\) NMR \(\delta: 0.89\) (3H, t, \(J=7.3\) Hz, \(CH_3\)), 1.29-1.48 (6H, m, \(3CH_2\)), 2.01-2.04 (1H, m, \(CH\)), 2.68-2.79 (2H, m, \(CH_2\)), 3.68-3.73 (2H, m, \(CH_2\)), 5.90 (2H, s), 6.27 (1H, dd, \(J=2.4\) and 8.8 Hz, phenyl), 6.47 (1H, d, \(J=2.4\) Hz), 6.68 (1H, d, \(J=8.8\) Hz), 7.15-7.20 (3H, m, phenyl), 7.25-7.28 (2H, m, phenyl).

3. Biological Evaluation

B. mori (Shunrei×Shougetsu) larvae were reared on an artificial diet as previously reported.\(^9\) Twenty-four hours after the 3rd molt, the corpora allata were extirpated with fine forceps under a binocular microscope, as described by Ohtaki et al.\(^7\) Test compounds in acetone solution (1–4 \(\mu\)l/ler) were each topically applied to the dorsal abdomen of the larvae within 1 hr after the allatectomy. Ten larvae were used for each dose. JH activity was evaluated by molting into normal 5th instar larvae. Anti-JH activity was determined against B. mori larvae as previously described.\(^5\)

\[
\text{ETB : } R^1 = \begin{array}{c} O \\ - \end{array} ; R^2 = H \\
1: R^1 = \begin{array}{c} \end{array} ; R^2 = CH_3 \\
KF-13: R^1 = \begin{array}{c} \\ \end{array} ; R^2 = C_2H_5 \\
2: R^1 = \begin{array}{c} \\ \end{array} ; R^2 = n-C_3H_7 \\
3: R^1 = \begin{array}{c} \end{array} ; R^2 = n-C_4H_9
\]

Fig. 1. Structures of ETB and ethyl 4-(2-benzylalkyloxy)benzoates.

Results and Discussion

As previously reported,\(^1\) in our bioassay using 24-h-old 3rd instar larvae of B. mori, KF-13 and 2 showed stronger precocious metamorphosis-inducing activity than pentyl (1) and octyl (3) analogs. For both KF-13 and 2, (S)-enantiomer was more active than (R)-isomer at low doses of 0.1 and 1 \(\mu\)g, but at higher doses their activity was reversed.

Table 1 summarizes the JH activity of ETB, methoprene, KF-13, 1, 2 and 3 when topically applied to allatectomized 4th instar larvae. All of the allatectomized and acetone-treated control larvae underwent precocious metamorphosis. ETB at 1 \(\mu\)g prevented precocious metamorphosis so that all treated larvae molted into 5th instar larvae; at a dose of 0.1 \(\mu\)g it showed lower activity. These results were almost the same as those reported by Kiguchi et al.\(^6\) Methoprene showed the same level of activity as ETB.

Racemic 1 showed JH activity at a high dose of 40 \(\mu\)g. Compound 1S at 40 \(\mu\)g had obvious JH activity, while 1R was inactive at this dose, indicating that the activity of racemic 1 is apparently due to the (S)-enantiomer. KF-13 had high JH activity in comparison with 1, but not as high as ETB. The JH activity of KF-13S was higher than that of KF-13R, indicating that the JH activity of racemic KF-13 is also essentially due to the (S)-enantiomer. Racemic 2 showed almost the same activity as KF-13. The (R)-enantiomer 2R showed increased activity in comparison with that observed for KF-13R. 2S was somewhat more active than 2R. Racemic 3 showed lower activity than racemic 2 but higher activity than racemic 1. No remarkable difference in JH activity between 3S and 3R was observed, probably due to the similar size of the benzyl and n-hexyl substituents at the chiral carbon atom. Thus, KF-13 and 2, which induced precocious metamorphosis at low doses, had relatively high JH activity. This result suggests that the decrease of precocious metamorphosis-inducing activity resulting from treatment with KF-13 and 2 at high doses is due to the counteraction caused by these compounds as JH agonists.

From detailed structure-JH activity relationship studies for aryl geranyl ethers,\(^10\) the placement of appropriate substituents on the benzene ring, such as a 4-ethyl or a 3,4-methylenedioxy group, has been shown to lead to comparatively high JH activity; there-
Table 1. Effects of methoprene, ETB, KF-13, 1, 2 and 3 on the development of allatectomized 4th instar larvae of *B. mori*

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose (μg/larva)</th>
<th>Precocious pupa</th>
<th>Larval-pupal intermediate or dauer larva</th>
<th>5th instar larva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allatectomized control</td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+methoprene (±)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>+ETB (±)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>+1 (±)</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+IS</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>+1R</td>
<td>40</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+KF-13 (±)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+KF-13S</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+KF-13R</td>
<td>40</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+2 (±)</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+2S</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+2R</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+3 (±)</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+3S</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+3R</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>+4</td>
<td>40</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+5</td>
<td>40</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Number of larvae tested: 10.
Therefore, we examined the activity of KF-13 analogs with a 4-ethyl (4) and a 3,4-methylenedioxy (5) group on the benzene ring (Fig. 2). These compounds had neither anti-JH activity in a dose range of 1–40 µg nor JH activity at 40 µg (Table 1), indicating that the 4-ethoxycarbonyl group of KF-13 is necessary for both activities.

Although numerous compounds, such as aryl geranyl ethers, alkyl (2E,4E)-3,7,11-trimethyl-2,4-dodecadienoates and 4-phenoxypyrenoxo derivatives, have been described to exhibit JH activity, there has been no report on JH activity of branched compounds like ethyl 4-(2-alkylalkyloxy)benzoates. ETB was the first compound showing both JH and anti-JH activity. This study indicates that ethyl 4-(2-alkylalkyloxy)benzoates, which have stronger anti-JH activity than ETB, show lower JH activity than ETB against B. mori larvae. In a series of ethyl 4-(2-alkylalkyloxy)benzoates, a correlation was observed between JH activity and anti-JH activity. In order to develop a genuine anti-JH agent showing no JH activity, further studies on the structure-activity relationships of these kinds of compounds are under investigation.

Acknowledgments
This work was supported by a grant-in-aid to E. K. for scientific research (no. 17208007) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References