秋田県における水稲の生育・収量,および乾物生産についての大潟村と県南部との比較

<table>
<thead>
<tr>
<th>誌名</th>
<th>日本作物學會紀事</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSN</td>
<td>00111848</td>
</tr>
<tr>
<td>巻/号</td>
<td>783</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 371-381</td>
</tr>
<tr>
<td>発行年月</td>
<td>2009年7月</td>
</tr>
</tbody>
</table>
秋田県における水稲の生育・収量、および乾物生産についての
大潟村と県南部との比較

川島長治
（秋田県立大学生物資源科学部）

要旨：秋田県の主要な米産地である大潟村と県南部における水稲の生育・収量、および乾物生産の特徴を明らかにしようとした。大潟村では分けつが発生が遅く、かつ少なく、m²当たり収量が少なかった。しかし1穂状の多い「穂重積的」な水稲で、m²当たり穂数は県南部とはほぼ同様の34000~35000であるが、千粒重が軽かった。収量は、大潟村610kg/10aで県南部より約20kg少なかった。収穫期における地上部乾物重はおよそ1500g/m²で両地域間に差違はないが、大潟村の方が穂や枯死部は穂で優れていた。乾物重は穂穂い期後30日の間に急増したが、大潟村では10日後前後の増加が少なかった。軽では県南部で穂穂い期後10〜37日間はゆっくり減少し、以後やや増加したが、大潟村では10日後までやや増加し、その後減少した。枯死部では大潟村、県南部ともに収穫期間中始終増加したが、その程度は大潟村で小であった。以上、大潟村における「海洋性的」気候、やや低めに推移する水・地温、生育初期の深水管理、土壌の養分保持力の強さなどによってもたらされた生育期の分けつ発生の抑制は、収穫期における農の「生理的活性」の保持につながるが、酸粉の糖への転換は県南部の方が効率的で、これらのことと両地域の収量および千粒重の相違となっている。

キーワード：大潟村、乾物生産、収量、収量構成要素、水稲、SPAD値、m²当たり穂数、m²当たり穂数

秋田県は全国有数の米産地である【作付け面積94100ha、10a当たり収量574kg（全国平均507kg）。一等米比率91.8％、いずれ農水省秋田農政所編「平成18年秋田県の農作物」による（以下同じ）。この年、秋田県の気象は平年でなかった。平年平均の一等米比率は著しく不作であった5年を除くと88.0％である（農水省秋田農政所資料）】が、本年を大別すれば県北部、沿岸部、県南部、本荘・由利に分けられる。中でも主要な産地は、沿岸部に位置する大潟村（9810ha、収量574kg）と県南部の仙北平野（21080ha、収量587kg）と横手盆地（13000ha、収量600kg）である。そこで、本研究では大潟村と横手盆地【主として平鹿郡平鹿町（現横手市平鹿町）、以下「県南部」という】の水稲の生育・収量、および乾物生産の特徴を把握しようとした。併せて、これら両地域で収量が高い要因を、西日本で収量が高い滋賀県の水稲と比較して検討した。

なお、水稲の生育に影響する要因に関して大潟村と県南部では以下の6つの相違点があげられる。すなわち大潟村では、第1に、沿岸部に位置して日本海の影響を受けて生育期間中の気温、とくに初期の気温が県南部ほど高くならないこと（第1表、県南部は内陸に位置して気温が上がり始めると大潟村より高くなるが、差異は大きくない（第1表には最低気温は示されてなかったが、例えば6月中旬における大潟の最低気温は14.3℃、横手14.0℃）、第2に、土壌が重たいで排水不良のため田面水の浸透が少なく、水・地温が低く推移すること（平鹿・横手1978）、第3に、水管理が特異的で、雑草防除を主目的に、移植直後は苗の葉先が出る程度の約7cm（秋田県立大学千葉和夫教授のご教示による）。活着後は10cm強の浸水に管理され、7月10日頃（幼穂分化期頃）以降はコンパイン収穫に備えて地耐力を高めるために落水させ、浸水は天水のみで供給による降雨が少ない場合に一時的に行われる程度であること、第4に、土壌が「スネクサイト（別名「スケクサイト」）と呼ばれる養分保持力の強い粘土で構成され（新田の含水量が多い水田が一部にあるが）、分けつ発生に必要な養分が溶出しきくなって、第5に、千穂地であるため地下水位が高いこと、第6に、施肥量が県南部に比してやや少ないこと、等である。これらから大潟村における水稲の初期生育は抑制気候となり、秋優り型の生育を示す。

材料と方法

調査は1991年から1998年にかけて行われた。品種はいずれも「あきたこまち」で、栽培法はそれぞれの慣行的な方法で詳細は第2表に示すとした。m²当たりの収量の推移と穂数、穂穂い期における「1穂当たり生葉数」、「1穂の生葉数」とはわずかでも最長生葉が残っている葉のこと。「1穂当たり生葉数」とは1本の茎についている生葉数の合計で、収穫時の維持の点から収穫期近くまでの値が多いことが望ましく、またその多少は穂数の「健全度」と、土壌からの養分供給力を示す指標でもある。部分的に枯死している葉については、全面面積に対する生葉部分の割合の小数値）LAI、その第3表に示す形質、および収量について解は1991年と1992年を基として、大潟村と県南部のそれぞれ6戸の農家の水田（1筆面積は大潟村1ha強、県南部
第1表 秋田県大湯村、横手市および滋賀県東近江市の旬別日照時間、気温および降水量の推移

<table>
<thead>
<tr>
<th></th>
<th>日照時間（時）</th>
<th>気温（℃）</th>
<th>降水量（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>大湯</td>
<td>横手</td>
<td>東近江</td>
</tr>
<tr>
<td>5月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上旬</td>
<td>51.2</td>
<td>55.4</td>
<td>48.9</td>
</tr>
<tr>
<td>中旬</td>
<td>59.4</td>
<td>52.8</td>
<td>40.1</td>
</tr>
<tr>
<td>下旬</td>
<td>63.3</td>
<td>67.3</td>
<td>52.5</td>
</tr>
<tr>
<td>6月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上旬</td>
<td>43.9</td>
<td>54.7</td>
<td>39.6</td>
</tr>
<tr>
<td>中旬</td>
<td>42.8</td>
<td>53.4</td>
<td>32.5</td>
</tr>
<tr>
<td>下旬</td>
<td>39.7</td>
<td>44.1</td>
<td>19.1</td>
</tr>
<tr>
<td>7月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上旬</td>
<td>36.1</td>
<td>42.9</td>
<td>30.9</td>
</tr>
<tr>
<td>中旬</td>
<td>44.9</td>
<td>50.2</td>
<td>28.0</td>
</tr>
<tr>
<td>下旬</td>
<td>55.9</td>
<td>67.6</td>
<td>52.1</td>
</tr>
<tr>
<td>8月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上旬</td>
<td>54.9</td>
<td>60.3</td>
<td>52.7</td>
</tr>
<tr>
<td>中旬</td>
<td>60.8</td>
<td>62.5</td>
<td>55.3</td>
</tr>
<tr>
<td>下旬</td>
<td>58.4</td>
<td>59.2</td>
<td>63.7</td>
</tr>
<tr>
<td>9月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上旬</td>
<td>51.7</td>
<td>46.0</td>
<td>51.2</td>
</tr>
<tr>
<td>中旬</td>
<td>41.1</td>
<td>39.2</td>
<td>44.2</td>
</tr>
<tr>
<td>下旬</td>
<td>44.0</td>
<td>38.9</td>
<td>37.4</td>
</tr>
</tbody>
</table>

気象庁HPによる。日照時間は1987～2000年の平均。降水量その他は1979～2000年の平均。
気温について（）内は最高。測定サイト名を市町村名は付かない。

第2表 大湯村と県南部における栽培法（1992年）

<table>
<thead>
<tr>
<th></th>
<th>大湯村</th>
<th>県南部</th>
</tr>
</thead>
<tbody>
<tr>
<td>田植え期</td>
<td>5/12</td>
<td>5/20</td>
</tr>
<tr>
<td>栽培密度*</td>
<td>20.0</td>
<td>21.8</td>
</tr>
<tr>
<td>出穂期</td>
<td>8/9</td>
<td>8/8</td>
</tr>
<tr>
<td>水管理</td>
<td></td>
<td></td>
</tr>
<tr>
<td>中干し</td>
<td>7/2〜7/12</td>
<td>9/13</td>
</tr>
<tr>
<td>落水</td>
<td>7/12</td>
<td>9/13</td>
</tr>
<tr>
<td>施肥法**</td>
<td>4.0</td>
<td>4.0〜5.0</td>
</tr>
<tr>
<td>基肥</td>
<td>4.0</td>
<td>4.0〜5.0</td>
</tr>
<tr>
<td>追肥</td>
<td>1.5〜2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>幼穂形成期</td>
<td>1.5〜2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>極断続期</td>
<td>1.5〜2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>止業完全発育期</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

*: /m²当たり株数 **: kg/10a（成串量）
収穂期は9月下旬から10月上旬

30a）について調査した。これ水田は大湯村では広く干拓地全域を網羅し、県南部では収量の高低と町全域をカバーするように選定されたものである。

m²当たり茎数の推移は1枚の水田の3ヶ所、1ヶ所20株の調査地点を設け、ほぼ1週間ごとに調査した。m²当たり穂数は1枚の水田からランダムに選んだ50株の平均と栽植密度から求めた。栽培密度における「3瘟当培生数」LAIその他の当栽培の水田の3ヶ所からそれぞれ3, 4, 3株、計10株を採取し、そのうち山川・平野の方法（1983）によって選抜した30本の茎について測定した。収量は、上記3ヶ所からそれぞれ30, 40、30株、合計100株を採取して求め、節目1.8mmで未成実を、水分含有率15.5%換算の10a当たりの玄米量で示した。

業績表以下の表SPAD値は1991年から1998年の間

2点と雄物川町（現横手市雄物川町）および十文字町（現横手市十文字町）各1点の計4点について、その間の推移を7〜10日間隔で調査した。材料は各回10株ずつで、水稲株を穂、茎（穂を含む）、稈、枯死部に分け、倒伏に関する茎の太さについては1996年に、最下位伸長節間長について長度と短節をノギスにより測定し、その平均値を茎の太さとした。倒伏程度は目視により、水稲がわずかでなびいていれば倒伏とし、水稲全株に占める倒伏し
た水稲の割合で示した。なお、倒伏は摺折型ではなく、なびき型であった。

収量構成要素他のほとんどの項目は全調査期間にわたってほぼ同様の傾向であったが、1993年と1998年における調査水田の収量は、他の年次や一般的な水田に比べて5％低かった。なお1991年は生育初期から気温が高めに推移し、1993年（平成5年）の比較的低い収量は主として冷害気象気味に推移したためである。

結 果

1. 茎数の推移

daike村の方が分けつつ発生が緩慢で、最高分け時の

m²当たり茎数が少なく、収穫も少ない傾向にあった（第1図、第3表）。そのため県南部より有効茎数が高かった（第3表）。

2. 蒸散期における1茎当たり葉面積やLAI等

系統数は100 cm²前後。LAIは4.0〜4.6で両地域間に大きな相違はなく、1茎当たり生葉数は5枚前後であるが大潟村の方がやや多かった（第4表）。倒伏に影響する倒伏は80 cm前後で両地域間でほぼ等しく、第3節図はほぼ等しいかわず県南部の方が長く、第4、5節図はほとんど相違はなかった（第4表）。

3. 収量構成要素と収量

1株当たり大潟村の方がやや多く、いわば「重量型的」であった（第3表）。m²当たり穂数は3400〜35000、登熟率は80％で両地域間にほとんど相違はなかった（第3表）。千粒重は大潟村の方がやや軽かった（第3表）。収量は大潟村610 kg、平鹿町630 kgで大潟村の方が約20 kg少なかった（第3表）。

4. 蒸散期における葉位別葉身の大きさ

両地域とも止葉から1〜2枚下の葉が最大となっている（第5表）。葉位別葉の大きさの傾向は山崎（1963）と同様であった。

5. 1茎当たり生葉数

大潟村で蒸散期に5.1とやや多く、その後もやや多く

第1図 m²当たり茎数の推移

平年値は秋田県昭和町農業改良普及所、平鹿町農協（いずれも調査年当時の過去10年の平均値）

第3表 大潟村と県南部における収量構成要素および収量

第4表 大潟村と県南部における諸形質

* : 主として「なびき型倒伏」で、倒伏には軽いものから相当程度のものを含むが、それら水田全体に対する面積割合、同一年次で同じアルファベットはDuncanの多重検定のもと5％水準で有意差がないことを示す。
推移した（第6表）。

6. SPAD値
出穂期において大淵村でやや低めであるが、その前後では両地域とも同じように推移し、出穂期～中期に33-34である。出穂1ヶ月後の9月上旬頃まで30を超える値であった（第2図）。

7. 倒伏程度と茎の太さ
倒伏は県南部の方が多く（第4表）。これに関係する茎の太さは県南部でやや細い傾向があるが（第7表）。少数ながら水田によっては大い場合があった。
なお、茎の厚さ（下位伸長節間の茎横断面に現れる、隔間部の厚さ）は大淵村の方が厚い傾向があった（データ省略）。

8. 籠の大きさ
穂の上部、下部とともに両地域間に相違はなかった（第8表）。

9. 登熟期における乾物重
（1）収穫期
平均的収量であった1996年について見ると（第9表）。地上部乾物重は大淵村1522 g/m²、県南部1515 g/m²ではほとんど相違はなかった（大淵村のC.V.: 9.3%、最高1698.2 g/m²、県南部ではC.V.: 2.4%、最高1551.3 g/m²）。しかし大淵村の方が穂（720 g/m²でC.V.: 10.0%、最高825.3 g/m²に対して、県南部では800 g/m²でC.V.: 1.1%、最高814.7 g/m²）や枯死部は軽く、茎や葉は重かった。
（2）穂摘い期から収穫期に至る間の穂の増加量
1996年について見ると（第9表）。大淵村600 g/m²、県南部680 g/m²で県南部の方が多かった。
（3）穂摘い期から収穫期に至る間の推移
（1998年のこの調査の収量は1996年の収量より5%弱低く、収穫期における地上部、穂乾の重量は第9表よりやや少なかった）。
地上部：穂摘い期後37日までやや急速に増加し、その後若干変動しつつ最終の重量（大淵村1415 g/m²、県南部1350 g/m²）に達した（第3図）。その間、大淵村の方がやや重く推移した（第3図）。

同じアルファベットはDuncanの多重検定のものと5%水準で有意差がないことを示す。
第9表 器官別乾物重（g/m²、1996年）

<table>
<thead>
<tr>
<th>地域</th>
<th>穂</th>
<th>葉</th>
<th>穀死部</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>大潟村A</td>
<td>119.0</td>
<td>545.7</td>
<td>208.2</td>
<td>19.0</td>
</tr>
<tr>
<td>大潟村B</td>
<td>603.1</td>
<td>-5.0</td>
<td>-58.5</td>
<td>90.5</td>
</tr>
<tr>
<td>大潟村C</td>
<td>722.2 a</td>
<td>540.7 a</td>
<td>149.7 a</td>
<td>109.5 a</td>
</tr>
<tr>
<td>県南部A</td>
<td>122.0</td>
<td>528.4</td>
<td>197.6</td>
<td>15.0</td>
</tr>
<tr>
<td>県南部B</td>
<td>682.7</td>
<td>-63.6</td>
<td>-92.5</td>
<td>125.6</td>
</tr>
<tr>
<td>県南部C</td>
<td>804.7 b</td>
<td>464.8 b</td>
<td>105.1 b</td>
<td>140.7 b</td>
</tr>
</tbody>
</table>

アは稈摘期の乾物重、イは稈摘期から収穫期に至る間の増減量、ウは収穫期の乾物重。この材料の収量は大潟村 627 kg/10 a、県南部 680 kg/10 a。収穫期については、同じアルファベットは Duncan の多重検定のもとで 5%水準で有意差がないことを示す。

第3図 m²当たり乾物重の推移（地上部および稈）（1998年）。
実線は大潟村、破線は県南部を示す。

第4図 m²当たり乾物重の推移（葉および稈）（1998年）。
実線は大潟村、破線は県南部を示す。
考察

1. 両地域間にm²当たりの茎数や穂数に相違が生じた理由

m²当たりの茎数の推移や穂数には、両地域の立地条件の相違による「海洋性的」気候と「陸地的性」気候（総合的に記したより内陆地でも気温の日較差は大きくない。なお主要な生育期間中の日照時間は県南部の方がやや多い傾向があり、気温が高めに推移する。ただし錦田ら（1987）の総合的に記したが、県南部では夏の気温がやや低めに推移した方が多収になる。）と言われる。生育初期のやや低い水・地温（角田 1964、平野・植渡 1978）や深水処理（荒井・宮原 1956、川島・村上 1985）、堆土物組成の違いによる土壌の養分保持力、施肥量（第2表）の相関等によって大渋村では分けた発生が抑制され（第1図）、結果的に穂数が少なくなる（第3表）。そして、このような初期生育の違いが県南部での分けた発生の過剩傾向となり、有効収割がやや低いこととなる（第1図、第3表）。また土壌からの窒素の吸収の相違、すなわち県南部では茎数の増加が早いため（第1表）生育初期から多量の窒素が吸収されて生育後期まで続くため、追肥に依存する割合が高くなる（第2表）と思われる。

2. 穏数以外の収量構成要素と収量

大渋村では県南部に比してm²当たり穂数は少ないが、1穂穂数のやや多い為「穂重的型」水稲となる（第3表）。したがって県南部の「穂数的型」水稲とともにm²当たり穂数は両地域でほぼ同じ34000~35000となり（第3表）、ほぼ十分な穂数が確保される（両地域の収量が高1の要因）。収穫密度は両地域とも高く（両地域の収量が高い第2の要因）高い収量に結びつくが、大渋村では千粒重が軽い傾向があり（第3表）このことによって大渋村の方が収量が低くなる（第3表）。

3. 登熟期間におけるLAI

登熟期間のLAIは4.0~4.6でそれ程大きくない。またこのことと、栽培が80cm弱の半壇性であること（第4表）、供試品種「あきたこまち」はいわゆる「草型育種」が普通のこともあった後の育成であること等を考えると吸光係数（門司・佐伯 1982）は小さく、個体群の内部まで日射がよく投入されると考えられる。

4. 登熟期間中の1株当たり生葉数と窒素含有率

登熟期間中の1株当たり生葉数は県南部でやや少なく推移したが（第6表）、このことは県南部での枯死枝乾物重の増大となり、枯死枝を含む葉枚中の窒素が畑へ多く移行して（戸川ら 1954、田中 1958）。畑での収穫から高乾物の合
成が効率的であると考えられる。

なお、このような葉枚から移行する窒素のみでは登熟期間における株の機能の維持には不十分であって、植株全体の窒素含有率の維持からも土壌からの補給が不可欠である（出井 1971、安藤ら 1990）。この補給は追肥によると（出井 1971）、下層土（心土）を含む土壌からの窒素による（安藤ら 1990）。この窒素には有用性いているもの（川嶺ら 1982）、県南部では第2表の施肥法からして前後により、大渋村では、7月10日頃の幼穂分化期後水田は落水状態にあって、少なくとも土壌表層30cmの水分含量は植物にとって吸水不可能とされる50％程度（Kramer 1983）に低下していることを著者ら認めており、後者によると推察される。このことは金田ら（1988）も指摘しており、東北地方のように生育期間中の気温が比較的低い地域における地力窒素の発現は、微生物の働きもそれに適するように生長が上昇した後、すなわち出穂期後となり（出井 1971）、水稲の要求と一致する。

なお1株当たり生葉数が大渋村の方が多く推移するのは、初期生育の抑制等によって生葉初期の窒素吸収が少なくその方が生育後期に回されること、根の機能が生育後期まで健全に維持されるためと考えられる。
5. SPAD 値および窒素含有率と光合成速度

SPAD 値は出穂期の頃を除けば両地域ではほぼ同じように推移し、出穂期 30 日後頃においても約 30 とかなり高かった（第 2 図、出穂期の鳥に県南部の方が高かったのは追肥のしかたの相違によると思われる）。

SPAD 値は葉中の窒素含有率と密接に直結的関係がある（金田ら1986）。その図 4 から、ここの SPAD 値 30 は窒素含有率 2.0~2.5% と推定され、石原ら（1978）を参照すると出穂期 30 日後頃の含有率としては高めである。

SPAD 値で表されるクロロフィルと窒素の含有率はともに光合成速度と密接に関係し（松島・和田1958，和田1969，津野1976），県南部でも 1 畦当たり生葉数はやや少なく推移するものの、両地域ともに登熟期間中高い光合成速度が保持されると考えられる（両地域で収量が高い第 3 の要因）。

6. 乾物重

（1）第 9 表に示したように、収穫期における地域上乾物重は両地域とも 1500 g/m² 強であった。この大小を見るため、日本型品種の中で比較的高い収穎が得られている報告例の中から徐ら（1997）が品種「カナリ」の超多収性要因解析で比較の対照とした「日本晴」（広域適性のある多収性品種）の全乾物重を観ると 1820 g/m² （その収穎量は656 kg を実験年度次の 8，9 月の日照時間はそれぞれ 200 時間超で著しく多かった）であった。したがって本研究の乾物重はそれには及ばないものの、試験・研究機関において小面積で周囲に栽培管理されたものでなく、農家田面で大規模に栽培された水稲の，かつ多くの培養点の平均であることを考慮すればかなり高い価であり，これが両地域で収量が高い第 4 の要因である。

また、本研究における登熟期間中乾物の総重量は 720 g ～800 g/m² で、徐ら（1997）の日本晴752.6 g/m² ほど等しい。すなわち地域上重を占める乾物の割合が徐ら（1997）の日本晴より高く収穎成立上効果的、すなわち両地域の収穎指数（初穂重）は高く、このことが両地域で収量が高い第 5 の要因である。

なおこのことと第 3 表に示した収穎構成要素とから、大湧村や県南部でさらには収量を高めにはもう一段の収穎の増加（比較的強風の穂をつける #+# 收穎当たり初穂数と穂面積を増加させ、その上で登熟後期の穂面積と穂数光合成速度。初穂数を受け入れ能力の低下防止、やや大きし穂面積指数の下で下位葉数葉が光によってかな シンク内の穂の配列（Murai ら 1957，武田1971，津野1976）等に留意する）ともに、出穂期の鳥に根の発育は終了する（川島1977，1988a，b，c）のことで、このことを念頭におい た栽培法で根の健全化を図る必要がある。具体的方法はい ずれ明かにしたい。

なお 1 畦当たり穂数はおよそ 100 cm² であるので（第 4 表）、穂数が多少増えても穂の相互連いはそれほど大き くならないであろう。

（2）収穎がやや低かった1998 年の水稲についての第 3 図において、収穎期における地上部乾物重は県南部でやや少なかったが（大湧村 1415 g/m²，県南部 1350 g/m²），穂数の相違は対比的に小さい（大湧村740 g/m²，県南部720 g/m²）。すなわちここでも県南部の収穎指数はここ後 かとはえず大湧村に優れている。一方，枯死部は県南部の方がやや重く（第 5 図）、茎や葉が大湧村で重かった（第 4 図）。

これらから、澱粉の澱粉の転化，および澱かから澱の種の移行（戸沢ら1954，田中1958）が県南部の方が効率的で、これらのが県南部においては十分に確保された m² 当たり初穂数の登熟期に必要なる澱粉を供給して収穎を高 以下の考えられる（登熟期中光合成速度が高く保持さ ること著しく、県南部の方が収穎が高くなる要 因）。ただし県南部では，穂摘期37 日以後茎の乾物重が 増加して登熟後期における澱粉の利用が悪く、この利 用により収穎増の余地がある。

なお大湧村において茎重が大であるのは，茎が大きいため細胞壁構成物質が多くなることも関係していると思われる。

（3）穂に蓄積する澱粉は出穂期までに茎に蓄えられてい たものと出穂期後に生産されたものからなり、一般に前者が 1/3，後者が 2/3 とされるが（戸沢ら1954，武田・丸太 1956，松島・和田1958，村田1976），収穎が高い場合や m² 当たり初穂数が多い場合には後者の割合が多いとされる（鳥山ら1958，松島・田中1963，松島ら1966）。本研究に おける茎重の減少量は第 9 表で大湧村 5.0 g/m²，県南部 63.6 g/m² で県南部の方が多く，茎の推移を細かく検 討した第 4 図では大湧村の方が多く，年次による相違 があった（要因は不明である）。

出穂後期に茎に再蓄積する澱粉の量は第 4 図に見られ るようにそれほど多くない（県南部でおよそ 50 g/m²），登熟期間中出穂後期に減少した茎の乾物の多くは穂へ転流したと推察される。そしてその量は第 9 表と第 4 図，とくに第 4 図の大湧村の推移から最大 170 g/m² 程度と考えられ，両地域と こ穂重の増加には出穂期後に生産された澱粉の割合が 2/3 以上となっている。

なお葉の展開は出穂直後まで終わり，登熟にとって重要な光合成速度は出穂後 2 週間後前，すなわち出穂 1 週間後前が最大となった後低下し，出穂より下位の葉で は展開完了直後から低下するので（武田・丸太1966，黑 田・玖村1990），両地域における出穂期後の乾物は葉や枝 の老化が進行する過程で生産されると考えられる。

（4）第 3 図において，大湧村では穂摘期第 10 日後頃，地上部重は急速に増加しているにもかかわらず，穂重の増 加が少なかった。千粒重は出穂期後 1 ～3 週間の穂重の転 流量によって左右されるので（長戸1941，武田・丸太
第10表 滋賀県における収量構成要素および収量（平成元年～18年の平均*）。

<table>
<thead>
<tr>
<th>地域</th>
<th>植栽密度（株/畝）</th>
<th>種数/畝</th>
<th>1穀干数</th>
<th>削数/畝</th>
<th>登熟歩合</th>
<th>千粒重</th>
<th>収量（kg/10畝）</th>
</tr>
</thead>
<tbody>
<tr>
<td>滋賀県</td>
<td>19.6 ± 0.8</td>
<td>398</td>
<td>73.8</td>
<td>29541</td>
<td>± 945</td>
<td>± 0.3</td>
<td>± 18.7</td>
</tr>
</tbody>
</table>

表紙より摘出した数値を日本農業学会報に記載。*：著者不作であった平成5年を除く。

1956年、松島・和田1958、松島・田中1963年）この処の収穫
の増加が緩慢であることが大洲村において千粒重が軽くな
り、県南部より収量が低くなる要因であると考えられる。
なお検査期10日前後、すなわち8月中旬の大洲村の降
水水量は著しく少ない（第1表33～34であった（第2図）。
このSPD値33～34は成田ら（1986）の図4から葉の窒
素含有量2.5%強あること。したがってこの生葉数と窒素
含有率とから、大洲村の窒素含有量は県南部より多くなる。
すなわち登熟初～中期に大洲村の水稲は県南部より窒素代
謝優先的な稲種になるように思われる。そうであれば、
登熟初～中期の玄米中の蛋白量（木戸架取1970）あるいは
アンモニア濃度（津野ら1990、津野ら窒素代謝の複合
な指標としてアンモニア濃度を採った）が高いと濃縮含
成が抑制されることで大島1962、津野や1990）大洲村の水
稲はこのような状態にあるかも知れない。また登熟後期
には新の稲米の受け入れ能力が増減することがあり（大洲
1957）。考察5のとおり登熟初～後期に葉の光合成速度
は保持されていても稲米の増加が著しい時期のマイナスを回
復できない可能性も考えられる。

いずれにしても登熟初～中期の収穫増加がスムーズ
で、その後の増加が異常に玄米の正常な育成に
とって重要であると思われる。しかし、大洲村ではそれら、
ときに急に干ける千粒重が軽くなるのではないであろう。
したがって大洲村の千粒重の増加のためには、登熟初
～中期の収穫増加、すなわち玄米の育成が順調に進むこ
との生理・生化学的な研究がぜひとも必要である。

（5）大洲村における収穫は720 g/㎡でかなり多い（第9
表）。この生産は、7月10日頃からの降雪状況での土壌
水分が低くなって後の、水稲に対する水の供給がかなり制
限された後であるのは注目される。

7. 初の大きさと千粒重
初の大きさは両地域間に相違がなかったから、これが大
洲村の千粒重が軽いことの要因ではなく、第4図に見られ
るような登熟初～中期の穂における穂粉藻の不十分さに
よると考えられる。

8. 倒伏と稲長、および茎の太さ
稲長は両地域ともほぼ80 cmの短辺で長くも短くもな
く（武田・大石1980、武田ら1983、黒田ら1989、大川・
石原1992）、個体群内部への光の授与やガス拡散（武田
1983、黒田ら1989）にとって適正な長さと考えられる。
倒伏は大洲村の方が少ない傾向があったが、m²当たり
茎数が少ないために茎が太く、かえっても厚くなるためと
考えられる。

9. 種別葉身の大きさ
両地域の葉身の大きさは第5表のとおりであったが、最
上位2～3葉は登熟のための稲粉を生産し（戸田ら1954、
村山ら1955、武田・丸太1956、田中1958）、下位葉は根部
に炭水化物を供給して根の機能の維持に当たる（戸田ら
1954、田中1958）、葉面積で分類が行われられる（田中
1958）。それら各葉の大きさは第5表のようにあって、
登熟中～後期に活動する葉は、このような茎葉とその1～
2枚下の葉である。また、登熟が進むにつれて1葉当たり
葉面積を示したがって葉面積指数は少なくなるが、それは
止葉から2～3葉目以下の下位葉の枯死による。

10. 大洲村、県南部と滋賀県の収量・品質についての若
干の考察
最後に秋田県大洲村や県南部で収量が低い要因とい
って、種類で栽培法が異なるので詳細な比較はできないが、
西日本において収量が高い滋賀県（およそ520 kgで近隣
の府県より20 kg強収量が高い）と比較しつつ若干考えて
みたい。

（1）水稲の収量はm²当たり穂数と登熟歩合によって決
まるが（松島・田中1963）、大洲村や県南部ではm²当た
り穂数は34000～35000（穂数で425、1穂穂数80）で、滋
賀県の29000（第10表、穂数および400、1穂穂数74）
よりかなり多い。にもかかわらず登熟歩合は滋賀県と同程
度で高い（第3表、第10表）。

登熟歩合は幼穂分化期以外、とくに登熟期の乾燥生産に
よって左右され（松島ら1984、松島ら1986、武田1971、
津野1976）、その時期の日射量の影響を強く受ける（松島
ら1954、Kudo1975、Murata1975、村田1976）。また光合
成産物が効率的に穂へ転流し、穂での穂精素生成がスムーズでなければならず、第 1 表のように、これに関係が深い 7～9 月の日照時間は、大潟村や県南部において滋賀県の代表的平垣地域の観測データを示したものより多い。また、その間の大潟村や県南部における平均気温 17～25℃は東近江の 20～26℃より 3℃前後低く、最高気温は東近江の 24～31℃より 1～3℃低い（第 1 表）。このような大潟村や県南部の気候は植物の栽培に適した気候を有し、出穂から刈取りまでの期間に著しい相違が見られる。そして滋賀県では田植えから出穂の間において、穂精素量の変動を考慮に入れた生産のための機械化の努力が必要であり、水稲の生育期間中の気温が比較的低いために水稲の生産が著しく少ないと考えされる。

出穂発生における一等米比率は 70%程度（兵卒水質農事務所のデータ）で出穂より刈取りまでの間に著しい相違が見られる。そして滋賀県では出穂から刈取までの期間において、穂精素量の変動を考慮に入れた生産のための機械化の努力が必要であり、水稲の生育期間中の気温が比較的低いために水稲の生産が著しく少ないと考えられることを考慮する。

水稲土壌は大潟村のカレイマイ（粘土耕栽培）を主とするが、一部に砂の含量が多い水田がある。県南部の灰色低地（野解川の沖積土壌や火山灰土を主とす る）で、大潟村や県南部の水田は水稲生産にとって良好であり、水稲の生育期間中の気温が比較的低いために出穂年頃にカマムシ類の発生が見られたもののが一般に害虫の発生を少ないと考えられる。

（4）大潟村は干拓地で海抜ゼロメートル地帯であるため降雨水不足することはなく（むしろ排水が困難）、県南部では降水量の多さに由来する雪解け水が豊富な上、奥羽山脈に水源涵養力に富むアブナ林が存在し、それらの水は広大な平野部をゆっくりと流下して、作付け期間中の水不足は極めて稀である。琵琶湖の存在によって用水が不足しないことと、琵琶湖の豊富な水を揚水した上で下流に流し、圃場の用水としている。代表例は「日野原地区基幹水利用施設」で、受益水田面積 5000 ha。溝井への依存度が高く、田植え作業を梅雨に待たなければならない近郊の地域（そのために田植え時期が滋賀県より約 2 週間遅い）とこの点が異なる。滋賀県では揚水に依存する度合いが高い（「日野原地区基幹水利用施設」では 4 段の揚水を行っている）。

謝辞：大潟村役場と平野町農協（現 JA ふるさと）には本研究の機会を与えいただいた。大潟村農協（現 JA 大潟）加藤和洋氏、大潟村の植生博士、小野喜美雄氏、工藤喜雄氏、中山義一氏、佐藤正一郎氏、村田正昭氏、村中龍生氏、五十嵐敏夫氏、平鹿町農協佐々木英二氏、佐藤理枝氏、佐藤光弘氏、平鹿町佐藤隆子氏、佐藤喜雄氏、佐藤正昭氏、寺田誠一氏、太田町（現大津市太田町）谷口彰氏、雄物川町（現横手市雄物川町）柳崎直人氏、十文字町（現横手市十文字町）近孝彦氏には調査水田を設け、あるいは提供いただいた。鬼ヶ呂原さんには実験の遂行に当たってお世話いただいた。秋田県と滋賀県の農村事業技術者かから貴重な助言をいただいた。秋田県立大学高崎、情報センター小森裕子さん、石黒くずささん、服部浩之教授には引用文献の蒐集でをお世話になった。記して謝意を表します。

引用文献
安藤豊・藤井弘志・中西政則 1990. 山形県庄内地域のイグアイ水田下層土における地底塩度の無機化過程について、土壌誌 61: 466－471.
荒井正雄・宮原益次 1956. 水稲の初期生産における栽培条件の研究、第 1 報：水稲の栽培条件における栽培条件の影響、農業雑誌 24: 163－165.
出井善光 1971. 安定多収水稲の施肥対策、農業及 46: 150－156.
平野哲也・植村進一 1978. 八郎渕干拓地水田における水稲生育の特徴について、秋田農業研究 4: 1－22.
石原邦・江原宏治・平沢正・小倉知浩 1978. 水稲業における気孔の開閉と環境条件との関係、第 7 報 植物の生活の様式 150: 664－673.

第 1 表 秋田県と滋賀県における主要な栽培期日間の日数（平成元年～18 年の平均 %）

<table>
<thead>
<tr>
<th>地域</th>
<th>田植えから出穂</th>
<th>出穂から刈取り</th>
<th>全生育期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>秋田県</td>
<td>30.3</td>
<td>80.2</td>
<td>56.4</td>
</tr>
<tr>
<td>滋賀県</td>
<td>27.1 (24.8)</td>
<td>92.8 (86.0)</td>
<td>42.6 (44.0)</td>
</tr>
</tbody>
</table>

農業省秋田県農業事務所および同様農業事務所資料による。*：著者作成であった平成 5 年を除く。栽培期は秋田県で 4/18、滋賀県で 4/7（4/14）（滋賀県における() 内は 15 年以降で、栽培および田植えが遅くなった。）
両素吸収量の評価と無機化両素の定量. 土肥誌 60 : 399 - 405.
門司正三・佐藤敬爾 1982. 5. 稲作物栽培における光要因とその物質生産に対する意義について. 日米正三・星野宣夫・新垣 敦実 188 植物の物質生産. 東海大学出版会. 東京. 183 - 223.
村山登・吉野実・大島正男・塚原真雄・川原崎将司 1955. 水稲の生育に伴う炭水化物の集積過程に関する研究. 農技研報 84 : 123 - 166.
長谷川一雄・江橋守衛 1960. 収穫期の気温が水稲の収量に及ぼす影響. 日作紀 28 : 275 - 278.
津野幸人 1976 イナ作多収稲. 農業技術系作物畝 2. 農文協, 東京. 59 - 104.
Regional Differences in Growth, Yield and Dry Matter Production of Paddy Rice in Akita Prefecture. –A comparison between Ohgata Village and South Akita–

Choji KAWASHIMA (Fac. of Bioresources Sci., Akita Pref. Univ., Akita 010-0195 Japan)

Abstract: The differences in growth, yield and dry matter production of paddy rice between Ohgata Village and South Akita were compared. (1) The Ohgata rice showed a slow development of tillers, had a smaller number of tillers and spikelets per square meter (34000~35000), but had a large number of spikelets per panicle. It was the so-called as “panicle-weight type”. (2) The yield per 10 a in Ohgata (610 kg) was about 20 kg less than that in South Akita. (3) The dry weight of the above ground biomass in Ohgata (1522 g/m²) was almost the same as that in South Akita (1515 g/m²). The weight of panicle and withered part was lighter, and the stem and leaf weight were heavier in Ohgata. (4) The panicle dry weight markedly increased during the 30 days after heading in South Akita; however, in Ohgata, the increase was slightly less at around 10 days after heading. The stem dry weight decreased from 10 to 37 days after heading in both regions, but, thereafter, increased a little in South Akita. The dry weight of the withered part increased constantly in both regions, though it increased less in Ohgata. These results indicate that the inhibition of tiller development in the early growth stage in Ohgata, which was caused by the oceanic climate, relatively low water and soil temperature, irrigation management and greater soil nutrient retention, lead to the maintenance of “high physiological activity of above ground part during ripening stage”, though starch was translocated to the panicle less efficiently. These factors cause the difference in the thousand grain weight and yield between the two regions.

Key words: Dry matter production, Number of spikelets per panicle, Number of spikelets per square meter, Ohgata Village, Rice plant, SPAD value, Yield, Yield component.