ガンガゼDiadema setosum生殖腺の呈味特性
Taste characteristics of the gonad of longspine black urchin Diadema setosum

KODAI KANEKO, TAKAAKI SHIRAI, MUNEHIKO TANAKA, MASASHI KAMEI, HITOSHI MATSUMOTO AND KAZUFUMI OSAKO

The taste of the gonad of longspine black urchin (Diadema setosum) was characterized in order to utilize it as a foodstuff since it is one of the main causes of rocky-shore denudation. Proximate components adenosine triphosphate (ATP) and ATP-related compounds of D. setosum gonad were similar to those of the gonads of Strongylocentrotus intermedius S. nudus and Loxechinus albus which are commercial sea urchins. However, the free amino acid composition of D. setosum gonad was extremely different from those of other sea urchin gonads: the ratios of sweet and bitter-tasting amino acids of D. setosum gonad were lower and higher, respectively. Sensory evaluation of synthetic extract composed of free amino acids and inosinic acid which was prepared by reference to the contents in each sea urchin gonad, showed that the synthetic extract of D. setosum tasted less sweet and more bitter than those of other sea urchin gonads. The data suggested that one of the reasons for the unpalatable taste of D. setosum gonad was its free amino acid composition ratio: lower in sweet-tasting amino acids and higher in bitter-tasting amino acids.

キーワード：Diadema setosum, 甘味アミノ酸, 塩焼け, ガンガゼ, 苦味アミノ酸

* Tel: 81-3-5463-0620. Fax: 81-3-5463-0620. Email: osako@kaiyodai.ac.jp
所在地：東京都港区港南4-5-7（4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan)
試料および方法

供試材料 長崎県長崎市小倉町沿岸海域にて2008年4月22日に採取されたガングゼを冷蔵で実験室まで搬入し、生蓄盛を取り出し試料とした。なお酸性、堿性および重量はそれぞれ2.6±0.4 cm, 5.2±0.9 cm, および54.6±25.2 gであった。エソバフンウニおよびキタムラサキウニは、2007年10月に東京都中央卸売市場築地にて、剥きワニを購入した。いずれも採取されて3日（販売業者からの聞き取り）の北海道産で、氷冷して実験室に持ち帰った。チリウニは、2007年6月に東京都中央卸売市場築地、株式会社業者とで、採取されてから7日間（販売業者からの聞き取り）剥きワニを購入し、氷冷して実験室に持ち帰った。いずれの試料も分析に供するまで−30℃で保存した。

一般成分 ガングゼは5個体の生蓄盛30 gを一にまとめ、乳鉢で均一にしたものを使料とした。分析に供した。その他の3種は剥きワニであったため、それぞれをランダムに100 gずつ取、同様に混合したものを測定した。水分は、試料3 gを精密後、105℃で恒量にした。試料を600℃で灰化後恒量にして粗灰分とした。粗タンパク質含有量はKjeldahl法により全窒素量を求めたのち6.25を乗じて求めめた。粗脂肪含有量はFolchらの方法により求めた。pHはpHメーター（PH211型、ハンバインスツルメンツジャパン株式会社製）を用いて測定した。

ATP関連物質 一般成分分析にて用いた試料を、同様にATP関連物質分析に用いた。ATP 80μg程度を試験管に精製し、そこに0.05 M 過塩素酸500 μLを加えガラス棒でよく漬け、抽出液を調製した。抽出液をセルロースメンプランフィルター（孔径0.45 μm、東洋漉紙株式会社製）で通過し、高速液体クロマトグラフ（BIP-1型、日本光光株式会社製）に供し、ATP関連物質を分析した。なお、移動相には200 ml NaH2PO4（pH 3.19）、ガラムはAsahipak GS-320 7G, (50 cm)を用い、検出波長254 nm、室温にて分析を行った。

遊離アミノ酸組成 ガングゼ生蓄盛を5個体、その他のウニは剥きウニからランダムに3 gずつ5個体分を試料とした。ガラスホモジナイザーに試料3 g（ガングゼにおいて3 gに満たない試料は全量）を裁り取り、30 mLのメタノールを加えホモジナイズした。その溶液を高速冷凍遠心機（SUPERMA21型、株式会社トミー精工製）を用いて遠心分離（7090×g, 10分, 0℃）後、上澄み液をろ過した。さらに、残渣を10 mLのメタノールを加えてホモジナイズし、同条件で遠心分離して上澄み液をろ過し、先の溶液に合わせた。この操作を3回繰り返し、集めた上澄み液にエーテル30 mLを入れこれら保持することにより、脱脂を行った。下層の溶液はすべて12管フラスコに移した。これをエバポレーター（N-N型、東京理化学機株式会社製）で濃縮し、濃縮液を50 mLにメスフラスコでメスアップし抽出液とした。抽出液をアミノ酸自動分析機（JLC-500型、日本電子株式会社製）に供し、遊離アミノ酸を分析した。分析結果はエクセル統計2002（株式会社社会情報サービス製）を用い、Fisherの最小有意差法により有意差を検定を行った（p<0.05）。

合成エキスの調製 ウニ生蓄盛の全味成分について、遊離アミノ酸とATP関連物質の寄与度が大きいことが知られていることから、得られたウニ生蓄盛の遊離アミノ酸組成およびATP関連物質の結果に基づいて、各ウニ生蓄盛の合成エキスを調製した。アミノ酸は、いずれかの試料100 gあたりに10 mg以上含まれているものを用い、それらを一般成分分析で得られた結果を基に、ウニ生蓄盛100 g中に含まれる水分量で溶解した。ATP関連物質はウニの全味に影響を及ぼすことが明らかになっているイノシン酸（IMP）30を、遊離アミノ酸と同様に合成エキスに加えた。後述することにATP関連物質は変化しやすく、試料の入手の過程が異なるガングゼと他の3種のウニで単独に比較することは難しいため、添加量は合成エキス100 mLに対して30 mgとした。また、pHも全味に影響を及ぼすことが考えられたため、合成エキスのpHは15% NaOH水溶液を用いて一般成分で得られた各生蓄盛のpHの結果と同様となり、調整した。

合成エキスの官能検査 調製した合成エキスを用いて、2点嗜好試験法に基づき官能検査を行った。すなわち、ガングゼ、エソバフンウニ、キタムラサキウニ、チリウニそれぞれの合成エキスにおいて、三者間（ガングゼ＝エソバフンウニ、ガングゼ＝キタムラサキウニ、ガングゼ＝チリウニ）で、甘み、苦み、旨み、味の強さ、および総合的な好ましさについて比較を行った。合成エキスは左1つずつ配置し、右の試料に対しての評価を−1, 0および1で判断させた。+1の評価であれば左の試料に1, −1の評価であれば右に1を加点した。9人（男性5名、女性4名）のパネルで15回の評価を行った。どちらか片方が選ばれる回数は、P=1/2の2項分布に従うことを用いて、2者間で嗜好の差があるかを検定した（両側検定）。また有意差はp<0.05とした。
結果および考察

一般成分 各ウニ生殖腺の一般成分を Table 1 に示した。粗貯蔵成分はガンガゼが 6.6% で、エゾバウンニの 7.2% およびリリツウの 9.3% よりも少なく、キタムラサキウに 4.8% より高かった。粗タンパク質含量は、ガンガゼが最も低く 15.2% で、エゾバウンニが 17.0%、キタムラサキウおよびリリツウはともに 16.0% であった。灰分はガンガゼが 2.0% で最も高く、エゾバウンニは 1.5%、キタムラサキウは 1.6%、チリウニは 1.9% であった。粗植水素化合物含量はガンガゼが最も高く 9.0% であり、エゾバウンニは 5.3%、キタムラサキウは 4.7%、チリウニは 2.6% であった。以上のことから、ガンガゼ生殖腺の一般成分は他の 3 種類生殖腺と比較して若干の相違があるものの、星味への影響は少ないと思われた。

ATP 関連物質 各ウニ生殖腺の ATP 関連物質を Table 2 に示した。Table 2 に示した物質のうち、IMP およびグアニル酸 (GMP) は旨みを呈するが、その他の物質はウニ生殖腺の至味には影響しないことが知られている。本実験ではこのうち IMP についてのみ分析を行った。ガンガゼ生殖腺中の ATP 含量は 18.0 mg/100 g と最も低い値を示し、他の 3 種は 27.8～34.3 mg/100 g であった。一方、アデノシンジリン酸 (ADP) 含量は最も高い値を示し、他の 3 種が 13.6～19.3 mg/100 g であった。アデノシン三リン酸 (AMP) はガンガゼ生殖腺にのみ検出され、45.6 mg/100 g であった。IMP 含量はガンガゼが 37.4 mg/100 g で最も高く、他の 3 種のウニは 24.9～28.0 mg/100 g と同程度の値を示し、差が見られなかった。インシン (HXR) 含量はガンガゼが 24.2 mg/100 g で、チリウニの 27.4 mg/100 g よりも少く、エゾバウンニの 13.2 mg/100 g およびキタムラサキウの 10.0 mg/100 g より高い値を示した。ヒポキシンシン (Hx) についてはチリウニのみ比較的少量見られ、1.9 mg/100 g であった。

ATP 関連物質含量について、ガンガゼ生殖腺には ATP が少ない (18.0 mg/100 g), ADP が多く (44.6 mg/100 g), AMP (45.6 mg/100 g) が検出されるっていた他の 3 種のウニ生殖腺と異なった傾向 (ATP: 27.8～34.3 mg/100 g, ADP: 13.6～18.2 mg/100 g) が見られた。また、入手経路および鮮度がガンガゼおよび他の 3 種で異なることが想定されるが、ATP 関連物質に差は見られなかった。IMP はガンガゼ生殖腺中に最も多く含まれていたが、ATP 関連物質は死後、時間の経過に伴い ATP → ADP → AMP → IMP → HxR → Hx と速やかに変化していくことが知られており、死後の酸化的詳細が明らかにできない市販のウニ生殖腺とガンガゼ生殖腺を単純に比較することは難しく、今後の IMP 生成速度について比較する等の検討が必要であると思われた。

遊離アミノ酸組成 ユニ生殖腺中の遊離アミノ酸組成を Table 3 に示した。ガンガゼの遊離アミノ酸はウリシが主成分で、次いでアルギニン、リジン、ロイシン、グリシンおよびバリンが多く含まれていた。他の 3 種のウニはグリシンおよびアルギニンが主成分であり、次いでリジン、アルギニンおよびグリシンが多く見られていた。
Table 3 Free amino acid composition of sea urchin gonad (mg/100 g)*1,2

<table>
<thead>
<tr>
<th>Amino acids (%)</th>
<th>Taste</th>
<th>Diadema setosum</th>
<th>Strongylocentrotus intermedius</th>
<th>Strongylocentrotus nudus</th>
<th>Loxechinus albus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phospho serine</td>
<td></td>
<td>4.8±2.1 (0.5)</td>
<td>3.3±0.2 (0.2)</td>
<td>1.4±0.3 (0.1)</td>
<td>2.1±0.4 (0.1)</td>
</tr>
<tr>
<td>Taurine</td>
<td></td>
<td>493.5±178.3p</td>
<td>117.1±8.6p (5.5)</td>
<td>18.3±2.4b (0.9)</td>
<td>41.2±3.5p (1.6)</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>Umami</td>
<td>2.2±0.9 (0.2)</td>
<td>0.6±0.0 (0.0)</td>
<td>5.7±0.9 (0.3)</td>
<td>8.7±7.5 (0.3)</td>
</tr>
<tr>
<td>Threonine</td>
<td>Sweet</td>
<td>15.0±5.5 (1.6)</td>
<td>9.7±0.3 (0.5)</td>
<td>36.4±4.7 (1.7)</td>
<td>49.6±4.8 (1.9)</td>
</tr>
<tr>
<td>Serine</td>
<td>Sweet</td>
<td>7.2±2.2 (0.7)</td>
<td>84.8±16.1 (4.0)</td>
<td>59.1±5.4 (2.8)</td>
<td>69.8±5.0 (2.7)</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>Umami</td>
<td>11.3±3.5 (1.2)</td>
<td>82.5±21.7 (3.9)</td>
<td>88.2±9.1 (4.1)</td>
<td>103.2±14.0 (4.0)</td>
</tr>
<tr>
<td>Glutamine</td>
<td></td>
<td>6.3±1.1 (0.7)</td>
<td>129.2±15.5 (6.1)</td>
<td>46.0±13.5 (2.1)</td>
<td>128.4±13.8 (4.9)</td>
</tr>
<tr>
<td>Glycine</td>
<td>Sweet</td>
<td>48.0±4.1c</td>
<td>1044.5±73.6c (49.4)</td>
<td>3.8±2.5a (49.7)</td>
<td>1299.5±104.6p (50.1)</td>
</tr>
<tr>
<td>Alanine</td>
<td>Sweet</td>
<td>13.5±3.6c</td>
<td>371.0±36.0b (17.6)</td>
<td>1066.6±111.6e (15.3)</td>
<td>202.4±26.9p (7.8)</td>
</tr>
<tr>
<td>Citrulline</td>
<td></td>
<td>2.3±0.7 (0.2)</td>
<td>ND (0.0)</td>
<td>327.8±44.0 (0.0)</td>
<td>ND (0.0)</td>
</tr>
<tr>
<td>α-Aminobutyric acid</td>
<td></td>
<td>0.8±0.2 (0.2)</td>
<td>ND (0.0)</td>
<td>ND (0.1)</td>
<td>4.6±0.4 (0.2)</td>
</tr>
<tr>
<td>Valine</td>
<td>Bitter</td>
<td>44.0±11.9 (4.6)</td>
<td>14.7±1.7 (0.7)</td>
<td>2.9±0.4 (2.7)</td>
<td>106.9±10.5 (4.1)</td>
</tr>
<tr>
<td>Cystine</td>
<td></td>
<td>ND (0.0)</td>
<td>ND (0.0)</td>
<td>58.6±10.0 (0.0)</td>
<td>6.8±1.0 (0.3)</td>
</tr>
<tr>
<td>Methionine</td>
<td>Bitter</td>
<td>5.1±2.1 (0.5)</td>
<td>5.9±0.6 (0.3)</td>
<td>0.7±0.7 (1.0)</td>
<td>23.0±11.7 (0.9)</td>
</tr>
<tr>
<td>Cysteine</td>
<td></td>
<td>0.9±0.4 (0.2)</td>
<td>ND (0.0)</td>
<td>20.7±4.7 (0.5)</td>
<td>39.7±3.0 (1.5)</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Bitter</td>
<td>31.9±10.8 (3.3)</td>
<td>10.4±1.2 (0.5)</td>
<td>10.2±8.0 (1.7)</td>
<td>59.4±9.6 (2.3)</td>
</tr>
<tr>
<td>Leucine</td>
<td>Bitter</td>
<td>50.7±17.6 (5.3)</td>
<td>17.0±2.8 (0.8)</td>
<td>36.6±6.9 (2.6)</td>
<td>72.1±15.9 (2.8)</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Bitter</td>
<td>30.6±10.4 (3.2)</td>
<td>16.2±1.2 (0.8)</td>
<td>56.4±11.5 (2.1)</td>
<td>49.8±7.6 (1.9)</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Bitter</td>
<td>10.2±2.4 (1.1)</td>
<td>8.7±1.0 (0.4)</td>
<td>44.8±9.7 (2.0)</td>
<td>49.9±6.8 (1.9)</td>
</tr>
<tr>
<td>γ-Aminobutyric acid</td>
<td></td>
<td>ND (0.0)</td>
<td>ND (0.0)</td>
<td>42.1±6.0 (0.0)</td>
<td>0.3±0.6 (0.0)</td>
</tr>
<tr>
<td>Ornithine</td>
<td>Bitter</td>
<td>1.9±0.4 (0.2)</td>
<td>1.7±0.3 (0.1)</td>
<td>ND (0.1)</td>
<td>3.0±0.4 (0.1)</td>
</tr>
<tr>
<td>1-Methylhistidine</td>
<td></td>
<td>ND (0.0)</td>
<td>ND (0.0)</td>
<td>2.1±0.6 (0.0)</td>
<td>1.8±0.1 (0.1)</td>
</tr>
<tr>
<td>Histidine</td>
<td>Bitter</td>
<td>4.1±1.8 (0.4)</td>
<td>1.9±0.2 (0.1)</td>
<td>ND (0.7)</td>
<td>10.9±6.2 (0.4)</td>
</tr>
<tr>
<td>Lysine</td>
<td>Bitter</td>
<td>60.8±14.9 (6.3)</td>
<td>84.4±4.4 (4.0)</td>
<td>15.1±8.9 (4.0)</td>
<td>150.2±23.7 (5.8)</td>
</tr>
<tr>
<td>Tryptophan</td>
<td></td>
<td>17.9±3.4 (1.9)</td>
<td>ND (0.0)</td>
<td>86.4±27.3 (0.8)</td>
<td>15.1±2.4 (0.5)</td>
</tr>
<tr>
<td>Arginine</td>
<td>Bitter</td>
<td>91.1±20.2 (9.5)</td>
<td>103.3±4.5 (4.9)</td>
<td>16.5±4.9 (3.0)</td>
<td>81.8±13.1 (3.2)</td>
</tr>
<tr>
<td>Proline</td>
<td>Sweet</td>
<td>5.3±3.9 (0.5)</td>
<td>6.8±1.4 (0.3)</td>
<td>64.9±18.5 (1.6)</td>
<td>16.6±3.0 (0.6)</td>
</tr>
<tr>
<td>NH₃</td>
<td></td>
<td>2.3±0.2 (0.2)</td>
<td>1.4±0.1 (0.1)</td>
<td>34.1±3.6 (0.2)</td>
<td>4.3±1.0 (0.2)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>962.8</td>
<td>2113.4</td>
<td>2145.1</td>
<td>2595.0</td>
</tr>
<tr>
<td>Sweetness*3</td>
<td></td>
<td>88.9±8.26b</td>
<td>1516.7±107.6a (81.4)</td>
<td>1523.9±163.3p (74.5)</td>
<td>1638.0±137.5p (69.5)</td>
</tr>
<tr>
<td>Bitterness*4</td>
<td></td>
<td>330.5±69.9bc</td>
<td>264.1±13.4b (14.2)</td>
<td>427.7±88.7bc (20.9)</td>
<td>607.0±87.0p (25.8)</td>
</tr>
<tr>
<td>Umami*5</td>
<td></td>
<td>13.5±8.6b</td>
<td>83.0±21.8a (4.5)</td>
<td>93.8±17.8a (4.6)</td>
<td>112.0±21.3a (4.8)</td>
</tr>
</tbody>
</table>

*1 Data are shown as mean±standard deviation.
*2 Different superscripts in each amino acid indicate statistical differences (p<0.05).
*3 Percentage of total free amino acids.
*4 ND, not detected.
*5 “Sweetness”, “Bitterness”, and “Umami” mean total amount of sweet-tasting amino acids, bitter-tasting amino acids, and umami-tasting amino acids, respectively.
ガングゼ生殖腺の呈味性

Table 4 Amino acids and ATP related components in synthetic extract (mg/100 mL) 693

<table>
<thead>
<tr>
<th></th>
<th>Diadema setosum</th>
<th>Strongylocentrotus intermedius</th>
<th>Strongylocentrotus nudus</th>
<th>Loxechinus albus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taurine</td>
<td>733</td>
<td>170</td>
<td>25</td>
<td>58</td>
</tr>
<tr>
<td>Threonine</td>
<td>22</td>
<td>15</td>
<td>49</td>
<td>71</td>
</tr>
<tr>
<td>Serine</td>
<td>10</td>
<td>123</td>
<td>81</td>
<td>100</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>16</td>
<td>120</td>
<td>121</td>
<td>147</td>
</tr>
<tr>
<td>Glutamine</td>
<td>9</td>
<td>187</td>
<td>63</td>
<td>182</td>
</tr>
<tr>
<td>Glycine</td>
<td>71</td>
<td>1516</td>
<td>1464</td>
<td>1853</td>
</tr>
<tr>
<td>Alanine</td>
<td>21</td>
<td>476</td>
<td>509</td>
<td>269</td>
</tr>
<tr>
<td>Valine</td>
<td>65</td>
<td>22</td>
<td>81</td>
<td>153</td>
</tr>
<tr>
<td>Methionine</td>
<td>7</td>
<td>9</td>
<td>29</td>
<td>33</td>
</tr>
<tr>
<td>Cystathionine</td>
<td>3</td>
<td>0</td>
<td>14</td>
<td>57</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>48</td>
<td>15</td>
<td>51</td>
<td>94</td>
</tr>
<tr>
<td>Leucine</td>
<td>76</td>
<td>25</td>
<td>77</td>
<td>103</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>45</td>
<td>24</td>
<td>61</td>
<td>71</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>15</td>
<td>13</td>
<td>58</td>
<td>71</td>
</tr>
<tr>
<td>Histidine</td>
<td>6</td>
<td>3</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>Lysine</td>
<td>90</td>
<td>122</td>
<td>119</td>
<td>214</td>
</tr>
<tr>
<td>Prolin</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>pH*1</td>
<td>6.25</td>
<td>6.48</td>
<td>6.43</td>
<td>6.06</td>
</tr>
</tbody>
</table>

*1 Adjusted with 15% NaOH to the same pH as the original sample.

Table 5 Sensory evaluation of admixture solution

<table>
<thead>
<tr>
<th></th>
<th>Diadema setosum</th>
<th>Strongylocentrotus intermedius</th>
<th>Strongylocentrotus nudus</th>
<th>Loxechinus albus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweetness</td>
<td>0</td>
<td>15*</td>
<td>0</td>
<td>15*</td>
</tr>
<tr>
<td>Bitterness</td>
<td>14*</td>
<td>1</td>
<td>14*</td>
<td>0</td>
</tr>
<tr>
<td>Umami</td>
<td>1</td>
<td>14*</td>
<td>2</td>
<td>12*</td>
</tr>
<tr>
<td>Taste strength</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Preference</td>
<td>0</td>
<td>12*</td>
<td>0</td>
<td>12*</td>
</tr>
</tbody>
</table>

*1 Means statistically significant difference (p<0.05).
金子，白井，田中，亀井，松本，大迫

味の強さでは、ガンガゼ (3) と他の 3 種 (6~10) 間で有意差は認められず、全体的な好ましさにおいて、ガンガゼはいずれのウニ（12~13）よりも有意に低い値（0）を示した。

以上の結果から、ガンガゼの味の強さが劣る理由に、甘味アミノ酸、なかでもグリシンおよびアラニンの含量が他のウニ類に比較して極端に低いこと、他のウニ生殖腺についでは味の強さアミノ酸総量に占める苦味アミノ酸量が 14.2~25.8% と比較的低いのに対して、ガンガゼ生殖腺中のそれは 76.3% と極端に高いことが明らかになった。

また、実販品のみならず採取されてすぐのウニ生殖腺においても、遊離アミノ酸全体に占めるグリシンおよびアラニンの量が非常に多いことから、これらと比較しても味が劣ることは明らかである。一方、仮に倉田氏およびアラニン等の甘味アミノ酸の含有量が他のウニ類と同程度であれば、他のウニ類の生殖腺と大差ない味覚性を有すると思われた。

文 献

1) 田村真弓，高 promoted取り組み前線 高速環境での取り組み 豊かな海の森づくり一海岸造成，礁破け対策の取り組みについて一，港湾2008; 85: 24-25。
2) 大迫一史「礁破けの原因とされる魚類」の食品への利活用。フードリサーチ2006; 616: 66-70。
3) 寺田利信，吉村拓，井間和夫「礁破け現象を考える」魚の食害対策について，漁港2004; 46: 16-20。
4) 写真私淑，長崎県下における礁破けとその回復のための技術的課題，農業1997; 45: 29。
7) 大迫一史，畜食魚の食品利用への展開。水産工学2008; 43: 41-45。
8) 西村三郎「原色の海日本海沿岸動物図鑑 [Ⅱ]」保育社，東京，1992; 542。
9) 冲大樹，林本祥輝，奥村宏征，三重県熊野灘北部沿岸に生息するガンガゼ食料として利用するための予備的調査．三重県科学技术振興センター水産研究部研究報告2004; 11: 15-21。
10) 小倉隆，ウニのエキス成分に関する研究一N．エキス構成成分の呈味性，日本水産学会誌，1963; 30: 749-756。
11) 董原藻，細山正美，Kjeldahl法，「蛋白質の定量法」（大谷郁，志村憲助，中村道徳，船津龍編）東京大学出版，東京，1977; 23-73。
13) 古川秀子，「おいしさを測る－食品官能検査の実際－」幸書房，東京，1994; 21。
14) 野中順三九，小泉千枝，大島敏明，食品保存と微生物。「食品保存学」恒星社厚生閣，東京，1982; 138。
15) 藤秀夫，アミノ酸の機能性とその新展開一タウリンの多彩な生理作用と動態。化学と生物2007; 45: 273-281。
17) 船津浩浩，小菅部史郎，加藤一郎，竹内文雄，川崎賢一，井野博幸，マルソウワ加工残留から調製した魚油と数種アジア産魚油との呈味成分の比較，日本水産学会誌2000; 66: 1026-1035。
18) 平野敏行，山沢通，須山三千三，キタムラサキウニ生殖腺のエキス成分に関する研究．日本水産学会誌1978; 44: 1037-1040。