伊勢・三河湾における漁業生産による窒素、リンの回収

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>誌名</td>
<td>愛知県水産試験場研究報告</td>
</tr>
<tr>
<td>ISSN</td>
<td>09197494</td>
</tr>
<tr>
<td>著者</td>
<td>船越, 茂雄</td>
</tr>
<tr>
<td>巻/号</td>
<td>14号</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 1-6</td>
</tr>
<tr>
<td>発行年月</td>
<td>2008年3月</td>
</tr>
</tbody>
</table>

農林水産省 農林水産技術会議事務局筑波産学連携支援センター
Tsukuba Business-Academia Cooperation Support Center, Agriculture, Forestry and Fisheries Research Council Secretariat
The contribution of fishery production to the recovery of nitrogen and phosphorus against discharge from the land in Mikawa Bay and Ise Bay

FUNAKOSHI Shigeo*

Abstract: To obtain the ratio of the amount of nitrogen (N) and phosphorus (P) recovered from the fishery production in Ise Bay and Mikawa Bay to their discharge from the land, we examined data for 1979-1984, 1989, 1994, 1999 and 2004. The result was 2.96-5.03% (average 4.17%) for N and 4.88-8.66% (average 7.21%) for P. We also investigated the percentage by product in the total amount of N recovered, and found that the average contributions of the six years investigated were 65.2% for fish, 19.0% for shellfish, 9.6% for cultivated algae, 5.8% for aquatic animals and 0.4% for natural algae. As for the amount of P recovered, the averages were 81.9% for fish, 10.4% for shellfish, 5.1% for cultivated algae, 2.5% for aquatic animals, and 1.4% for natural algae. Fish and shellfish accounted for 92.3% of the total P recovered. Sardine and anchovy, and sand eels contributed 74% to both N and P recovery. These percentages are almost the same as those in Tokyo Bay in the 1960s when the fishery was in its prime. This suggests that the fisheries in Ise Bay and Mikawa Bay play very important roles in natural recycling of N and P and contribute greatly to water purification in this area.

キーワード: 漁業生産，窒素，リンの回収

伊勢・三河湾における漁業生産による窒素，リンの回収

船越茂雄

伊勢・三河湾の漁場環境は，赤潮や栄養塩水塊が多発的に発生し，水産資源の生息にとって厳しい状況が続いており，とくに夏季を中心に大規模に発生する栄養塩水塊は，多くの水産資源が低減する主要な原因となっている。これに対して陸域では窒素，リン，COD の総量削減計画による負荷量削減，海域では干潟・浅瀬の保全や修復などによる水質浄化機能の回復など，さまざまな対策がとられてきている。一方，近年，水産業のもと多面的な機能が注目され，中でも漁業生産を通じて窒素やリンを除去する物質循環機能の有効性が見直されてきている。) とくに都市型もしくは都市近郊型漁業は，東京湾や伊勢・三河湾のように，高栄養化の進んだ閉鎖的な内湾を主漁場としているため，このような物質循環機能の果たす役割は大きいと考えられるが，伊勢・三河湾海域では狭義の伊勢湾についての報告を除いていない。この報文では，伊勢・三河湾海域における漁業生産を通じた窒素，リンの回収量を詳しく算出することで，この海域の漁場環境の改善，水質浄化に果たす漁業の役割について評価したい。

材料及び方法


漁業生産による窒素，リン回収量は，まず以下の式で

*愛知県水産試験場漁業生産研究所 (Marine Resources Research Center, Aichi Fisheries Research Institute, Toyohama, Minamichita, Aichi470-3412, Japan)
魚介類の飼料別回収量を計算し、それらを合計した。

室素・リン回収量：県飼料量×飼料係数
×室素・リン換算係数×飼料室素・リン回収割合

魚介類の飼料別回収量は、東海農政局統計部が公表している愛知県農林水産統計年報および三重県農林水産統計年報から集計した。愛知県の漁業生産統計では、伊勢・三河湾と瀬戸外海とが分離されているので、漁協別・漁業種別統計及び魚介類の飼料別分布信息などから、飼料別に飼料量の湾内飼料割合を計算し（表1）、伊勢・三河湾分を集計し直した。三重県の伊勢湾飼料量は、伊勢湾漁業（木曾岬町から二見町）の漁業統計を使い、知 llevar県の伊勢・三河湾分と合計して伊勢・三河湾内飼料量とした。ただし、鵜沼の鳥取市の飼料量のうちマイワシ、カタクイワシについては、主漁場が湾内であることから伊勢湾漁区に含め集計した。

魚介類の飼料・リン換算係数は、まず五訂日本食品標準成分表（科学技術庁資源調査会編）に掲載されている種類別たんぱく質含有率を室素＝たんぱく質含有率値、飼料係数6.25で割って計算した。種類についてはむき身の割合を重量の1/3として計算し、たんぱく質含有率の数値がない種類については、種類4種類の平均値を使って計算した。種類の飼料換算係数は、骨の中に多く含まれるリノも考慮した尾形の分析値の平均0.73％を用いた。その他の水産動物、種類、飼料については、前述した五訂日本食品標準成分表のリン含有率を用いた。種類については種別の中にもリンが含まれていることから、0.48/トニの数値を用いた。室素、リン含有量の算出に用いた魚介類種と換算係数を表2に示した。

伊勢・三河湾内で飼料される魚介類には、瀬戸外海と湾内を回遊し、行き来している種類があり、これらは外海域の飼料やリノも成長の糧としていることから、飼料飼料量が直ちに湾内の飼料、リン回収量を表すものではない。このような飼料と外海を回遊する魚介類の飼料、リノの利用を考慮にもとめることは困難であるが、便宜的に飼料を以下の3つの生活タイプに分類し、それぞれについて湾内飼料・リン回収割合を計算した（表1）。

＜ケース1＞ 回収割合=1.0

一生を湾内で生活する種類、もしくは生活史の始めに湾内に来漁し、漁獲対象期間が過ぎると外海を主な生活場所とする種類。

（例）魚類のうちシャリス、アジ類、ヒラメ、カレイ類、エゾ類、アザラシ類、イカ類、その他水産動物、種類、飼料の全が該当する。

＜ケース2＞ 回収割合=湾内に分布した月数/12

生活史の中で、湾内生活時間の占める割合を定義した。これに該当する種類は、生活史の一時期に湾内に

表1 湾内飼料割合と湾内窒素・リン回収割合

<table>
<thead>
<tr>
<th>種類</th>
<th>湾内飼料割合</th>
<th>湾内窒素・リン回収割合</th>
</tr>
</thead>
<tbody>
<tr>
<td>コジシロ</td>
<td>1.0</td>
<td>0.68 (7/12)</td>
</tr>
<tr>
<td>マイワシ</td>
<td>1.0</td>
<td>0.68 (7/12)</td>
</tr>
<tr>
<td>カタクイワシ</td>
<td>1.0</td>
<td>0.68 (7/12)</td>
</tr>
<tr>
<td>シラス</td>
<td>0.4</td>
<td>1.00</td>
</tr>
<tr>
<td>アシガシ</td>
<td>0.5</td>
<td>1.00</td>
</tr>
<tr>
<td>サツシマガシ</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>ヒラメ</td>
<td>0.6</td>
<td>1.00</td>
</tr>
<tr>
<td>カレイ類</td>
<td>0.6</td>
<td>1.00</td>
</tr>
<tr>
<td>エゾ類</td>
<td>0.6</td>
<td>1.00</td>
</tr>
<tr>
<td>アザラシ類</td>
<td>0.6</td>
<td>1.00</td>
</tr>
<tr>
<td>エゾ類</td>
<td>0.6</td>
<td>1.00</td>
</tr>
<tr>
<td>タチエ</td>
<td>0.6</td>
<td>0.67 (8/12)</td>
</tr>
<tr>
<td>ボラ類</td>
<td>1.0</td>
<td>1.00</td>
</tr>
<tr>
<td>ショウ類</td>
<td>1.0</td>
<td>0.83 (10/12)</td>
</tr>
<tr>
<td>イカ類</td>
<td>1.0</td>
<td>1.00</td>
</tr>
<tr>
<td>その他の魚</td>
<td>0.6</td>
<td>0.89</td>
</tr>
</tbody>
</table>

【水産動物】

<table>
<thead>
<tr>
<th>種類</th>
<th>鯖類</th>
<th>カレイ類</th>
<th>イタク類</th>
<th>タチエ</th>
<th>マグロ類</th>
<th>シマエ</th>
<th>ヒラメ</th>
<th>ショウ類</th>
</tr>
</thead>
<tbody>
<tr>
<td>鯖類</td>
<td>0.6</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>カレイ類</td>
<td>0.6</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>イタク類</td>
<td>0.6</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>タチエ</td>
<td>0.6</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>マグロ類</td>
<td>1.0</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シマエ</td>
<td>1.0</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヒラメ</td>
<td>0.6</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ショウ類</td>
<td>0.6</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【見切】

<table>
<thead>
<tr>
<th>種類</th>
<th>アサリ</th>
<th>パテダイ</th>
<th>プラドダイ</th>
<th>トゲタニ</th>
<th>ナオトゲ</th>
<th>その他の魚</th>
</tr>
</thead>
<tbody>
<tr>
<td>鯖類</td>
<td>1.0</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>カレイ類</td>
<td>1.0</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>イタク類</td>
<td>1.0</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>マグロ類</td>
<td>1.0</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シマエ</td>
<td>1.0</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【鯖類】

<table>
<thead>
<tr>
<th>種類</th>
<th>他鯖類</th>
<th>異鰭ノリ</th>
</tr>
</thead>
<tbody>
<tr>
<td>鯖類</td>
<td>1.0</td>
<td>1.00</td>
</tr>
<tr>
<td>異鰭ノリ</td>
<td>1.0</td>
<td>1.00</td>
</tr>
</tbody>
</table>

表2 室素、リン含有量の算出に用いた換算係数

<table>
<thead>
<tr>
<th>種類</th>
<th>室素</th>
<th>リン</th>
</tr>
</thead>
<tbody>
<tr>
<td>コジシロ</td>
<td>0.0304</td>
<td>0.0074</td>
</tr>
<tr>
<td>マイワシ</td>
<td>0.0317</td>
<td>0.0074</td>
</tr>
<tr>
<td>カタクイワシ</td>
<td>0.0391</td>
<td>0.0074</td>
</tr>
<tr>
<td>シラス</td>
<td>0.0389</td>
<td>0.0074</td>
</tr>
<tr>
<td>アシガシ</td>
<td>0.0301</td>
<td>0.0074</td>
</tr>
<tr>
<td>サツシマガシ</td>
<td>0.0301</td>
<td>0.0074</td>
</tr>
<tr>
<td>ヒラメ</td>
<td>0.0520</td>
<td>0.0074</td>
</tr>
<tr>
<td>カレイ類</td>
<td>0.3314</td>
<td>0.0074</td>
</tr>
<tr>
<td>エゾ類</td>
<td>0.3322</td>
<td>0.0074</td>
</tr>
<tr>
<td>アザラシ類</td>
<td>0.2774</td>
<td>0.0074</td>
</tr>
<tr>
<td>ダク類</td>
<td>0.3328</td>
<td>0.0074</td>
</tr>
<tr>
<td>ボラ類</td>
<td>0.3307</td>
<td>0.0074</td>
</tr>
<tr>
<td>ショウ類</td>
<td>0.3317</td>
<td>0.0074</td>
</tr>
<tr>
<td>イカ類</td>
<td>0.3375</td>
<td>0.0074</td>
</tr>
<tr>
<td>その他の魚</td>
<td>0.0316</td>
<td>0.0074</td>
</tr>
</tbody>
</table>

【水産動物】

<table>
<thead>
<tr>
<th>種類</th>
<th>鯖類</th>
<th>カレイ類</th>
<th>イタク類</th>
<th>タチエ</th>
<th>マグロ類</th>
</tr>
</thead>
<tbody>
<tr>
<td>鯖類</td>
<td>0.0346</td>
<td>0.0031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>カレイ類</td>
<td>0.0230</td>
<td>0.0020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>イタク類</td>
<td>0.0290</td>
<td>0.0032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>タチエ</td>
<td>0.0262</td>
<td>0.0016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>マグロ類</td>
<td>0.0054</td>
<td>0.0001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【海藻】

<table>
<thead>
<tr>
<th>種類</th>
<th>鯖類</th>
<th>カレイ類</th>
<th>イタク類</th>
<th>タチエ</th>
</tr>
</thead>
<tbody>
<tr>
<td>鯖類</td>
<td>0.297</td>
<td>0.0025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>カレイ類</td>
<td>0.0284</td>
<td>0.0020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【有魚類】

<table>
<thead>
<tr>
<th>種類</th>
<th>天然飼料（飼料）</th>
<th>有魚類（飼料）</th>
</tr>
</thead>
<tbody>
<tr>
<td>天然飼料（飼料）</td>
<td>0.0354</td>
<td>0.0016</td>
</tr>
<tr>
<td>有魚類（飼料）</td>
<td>0.0360</td>
<td>0.0016</td>
</tr>
</tbody>
</table>

【魚類】

<table>
<thead>
<tr>
<th>種類</th>
<th>鯖類</th>
<th>カレイ類</th>
<th>イタク類</th>
<th>タチエ</th>
</tr>
</thead>
<tbody>
<tr>
<td>鯖類</td>
<td>0.0354</td>
<td>0.0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>カレイ類</td>
<td>0.0360</td>
<td>0.0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>イタク類</td>
<td>0.0360</td>
<td>0.0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>タチエ</td>
<td>0.0358</td>
<td>0.0035</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【飼料】

<table>
<thead>
<tr>
<th>種類</th>
<th>鯖類</th>
<th>カレイ類</th>
<th>イタク類</th>
<th>タチエ</th>
</tr>
</thead>
<tbody>
<tr>
<td>鯖類</td>
<td>0.0354</td>
<td>0.0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>カレイ類</td>
<td>0.0360</td>
<td>0.0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>イタク類</td>
<td>0.0360</td>
<td>0.0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>タチエ</td>
<td>0.0358</td>
<td>0.0035</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
来遊し漁獲対象となる種類で、ここではコノシロ、マイワシ、カタクチイワシ、タイ類、スズキ類である。なお、湾内漁獲対象月数は、窒素、リン回収負荷量が
公表されている前述した6カ年の愛知県塩浜市場において、漁獲のある月数の平均値としてもとした。

＜ケース 3＞ 回収割合 = 0

湾内漁業ではほとんど漁獲されない種類で、ここで
はサバ類が該当する。

漁業生産による窒素、リン回収量を、愛知、三重、岐阜の三県の下水道処理施設で除去される窒素、リン量と
比較した。そのために平成16年度版下水道統計（行政編）
（社）日本下水道協会において、処理施設毎に窒素、リ
ンの流入水と流出水の年間平均濃度の値をもとめ、それ
に年間処理水量を掛けて算出した数値を集計し、下水道
処理施設での除去量とした。

結 果

(1) 窒素、リン発生負荷量

伊勢・三河湾の窒素発生負荷量は、1979 年には 68,620
トン/年であったが、1984年には 47,085
トンと 31.4 %減少した（図 1）。減少率は 861 トン/年で
あった。一方、リン発生負荷量は、1979 年の 8,906 トン
/年が 2004 年には 3,942 トンと 55.7%も減少している。減少率は 199 トン/年であった。

(2) 漁業生産を通じた窒素、リンの回収量と回収率

魚類、水産動物、貝類、藻類（天然と養殖）の窒素、リ
ン回収量を表 3 に、また、発生負荷量に対する回収率を
図 2 に示した。窒素の回収率は、魚類 1.59 〜 3.33 %（平
均 2.71 %）、貝類 0.65 〜 0.96 %（平均 0.80 %）、藻類（養
殖）0.30 〜 0.48 %（平均 0.41 %）、水産動物 0.19 〜 0.33
%（平均 0.24 %）、藻類（天然）0.01 〜 0.03 %（平均 0.02
%）の順に多い。また、リン回収率は、魚類 3.61 〜 7.13
%（平均 5.90 %）、貝類 0.65 〜 1.01 %（平均 0.79 %）、藻
類（養殖）0.24 〜 0.51 %（平均 0.40 %）、水産動物 0.13 〜
0.25 %（平均 0.18 %）、藻類（天然）0 〜 0.02（平均 0.01 %）
の順であった。なお、図 2 では藻類（天然）は省略した。

漁業生産による窒素、リン回収量に占める各分類群の
回収量の割合を平均値で見ると、窒素では魚類 65.2 %
、貝類 19.0 %、藻類（養殖）9.6 %、水産動物 5.8 %、藻類（天
然）0.4 %と、魚類と貝類で 84.2 %を占めた。

一方、リンでは魚類 81.9 %、貝類 10.4 %、藻類（養殖）
5.1 %、水産動物 2.5 %、藻類（天然）0.1 %の順で、魚類
と貝類で実に 92.3 %を占めている。魚類の中では、マ
イワシやカタクチイワシなどのイワシ類やイカナゴの占
める割合が大きく、6 年間の平均では、イワシ類は、窒
素、リンとともに魚類回収量の 31 〜 71 %（平均 54 %）
、イカナゴは、窒素 3 〜 28 %（平均 15 %）、リン 4 〜 29
%（平均 15 %）であった。この 2 つのグループを合わせ

図 1 伊勢・三河湾の窒素リン、発生負荷量
資料：環境省

表 3 魚類、水産動物、貝類、藻類（天然と養殖）の生産による窒素、リン回収量

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>魚類</td>
<td>2,113</td>
<td>2,171</td>
<td>2,040</td>
<td>932</td>
<td>1,546</td>
<td>1,056</td>
<td>1,643</td>
<td>65.2</td>
<td></td>
</tr>
<tr>
<td>水産動物</td>
<td>147</td>
<td>223</td>
<td>174</td>
<td>122</td>
<td>112</td>
<td>95</td>
<td>146</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>貝類</td>
<td>615</td>
<td>555</td>
<td>586</td>
<td>397</td>
<td>339</td>
<td>387</td>
<td>480</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>藻類（天然）</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>13</td>
<td>16</td>
<td>9</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>藻類（養殖）</td>
<td>205</td>
<td>304</td>
<td>274</td>
<td>282</td>
<td>209</td>
<td>178</td>
<td>242</td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>3,089</td>
<td>3,260</td>
<td>3,079</td>
<td>1,738</td>
<td>2,219</td>
<td>1,732</td>
<td>2,520</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>魚類</td>
<td>498</td>
<td>515</td>
<td>489</td>
<td>228</td>
<td>384</td>
<td>268</td>
<td>397</td>
<td>81.9</td>
<td></td>
</tr>
<tr>
<td>水産動物</td>
<td>12</td>
<td>19</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>12</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>貝類</td>
<td>63</td>
<td>59</td>
<td>63</td>
<td>42</td>
<td>36</td>
<td>40</td>
<td>51</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>藻類（天然）</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>藻類（養殖）</td>
<td>21</td>
<td>31</td>
<td>28</td>
<td>28</td>
<td>21</td>
<td>19</td>
<td>25</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>594</td>
<td>624</td>
<td>594</td>
<td>308</td>
<td>452</td>
<td>336</td>
<td>485</td>
<td>99.9</td>
<td></td>
</tr>
</tbody>
</table>
図2 魚類、水産動物、貝類、藻類（養殖）の生産による窒素、リンの発生負荷量に対する回収率

1994年はマイワシとアサリの急減によって窒素、リン回収率は大きく低下した。これらの結果から、漁業生産全体による窒素の発生負荷量に対する回収率を計算すると、2.96 ～ 5.03％（平均 4.17％）であった。一方、リン回収率は、4.88 ～ 8.66％（平均 7.21％）であった（図3）。

（3）単位漁獲量あたり窒素、リン回収量

漁業生産による単位漁獲量あたり窒素回収量は、水産動物29.7kg/トン、魚類21.1kg/トン、貝類13.5kg/トン、藻類（養殖）4.4 kg/トン、藻類（天然）3.4kg/トンの順で、水産動物が最も多く、魚類の1.4倍、貝類の2.2倍、藻類（養殖）の6.8倍、藻類（天然）の8.7倍となって
いる（図 4）。また、リン回収量は、魚類が 5.1 kg/トンで最も多く、次いで水産動物 2.4 kg/トン、貝類 1.4 kg/トン、藻類（養殖）0.5 kg/トン、藻類（天然）0.1 kg/トンの順である。魚類のリン回収量は水産動物の 2.1 倍、貝類の 3.6 倍、藻類（養殖）の 10.2 倍、藻類（天然）の 51 倍である。魚類では骨の中にもリンが多く含まれているため、窒素における水産動物との順位が逆転している（図 4）。

考察
伊勢・三河湾における漁業生産による窒素の発生負荷量に対する回収率は 2.96 ～ 5.03％（平均 4.17 ％）、リン回収率は 4.88 ～ 8.66％（平均 7.21％）であった。この値は、愛知県知多町から三重県鳥羽市以北の伊勢湾について、1980 年から 1997 年の値として報告した水野の結果、窒素 2.8 ～ 9.3％（平均 5.6％）、リン 2.6 ～ 7.5％（平均 5.1％）に比べると、窒素の平均値でやや小さく、リンの平均値で大きかったが、漁業生産による窒素、リンの回収率が、おおむね発生負荷量の数パーセントという値では一致している。しかし、今回の分析から、漁業生産では回収できない窒素、リン量が、平均値で見ても発生負荷量のそれぞれ 96 ％、93％もあることが明らかになった。

漁業生産による窒素回収率は、1979 年の 4.48 ％が、2004 年には 3.68 ％と 0.8％低下している。一方、リン回収率は、1979 年の 6.67％が、2004 年には 8.52％と逆に 1.85％増加した。これは、この間に窒素の発生負荷量が 31.4％、リンの発生負荷量が 55.7％減少したのに対して、漁業生産量の減少率が 42％（図 5）と、窒素を上回り、リンを下回ったためと考えられる。一方、1994 年は窒素とリンの回収率が、それぞれ 2.96％、4.88％にまで大きく低下した。これは、この年のマイワシを中心とした生産量の落ち込みが、窒素とリン発生負荷量の
経年減少率を大きく上回ったことが影響している。
次に、漁業生産による窒素、リンの回収量を下水道処理施設における除去率と比較してみたい。伊勢・三河湾
の集水域に含まれる愛知県、三重県、岐阜県の2004年
における三県の下水道処理施設で除去された窒素、リン
量は、窒素で18,940トン、リンで3,475トンと推定され
た。この数字を基に計算すると、2004年の漁業生産に
による窒素、リン回収量は、下水処理による回収量の窒素
で9.1％、リンで9.7％に相当する。また、マイクシが
発泡で漁業による回収量が最も多くかった1984年の場合
を単純化して近似すると、割合はそれぞれ17.2％、18.0
％と2倍近くになり、漁業生産による窒素、リン回収量
がけっして無視できない数値であることを示す。
漁業生産による窒素、リン回収量を、計算例のある東
京湾と比較してみる。東京湾における窒素、リン回収率
の最大値は、漁業が最盛期であった1960年頃で、窒
素で4.1％、リンで10.3％と推定されている。これに
対して今回の伊勢・三河湾の平均値は、窒素で4.2％と
ほぼ同レベル、リンで7.2％とやや小さいが、ほぼ1960
年当時の東京湾の漁業最盛期の数値に近い。
今回の分析から、伊勢・三河湾の漁業生産が、高いレ
ベルで窒素やリンの物質循環の補完的機能を果たし、こ
の海域の水質浄化を始め海域の環境保全に貢献している
ことが示唆された。このことから、都市化の進んだ地域に
関連する閉鎖的内湾における漁業振興の重要性を示すこ
の示唆は、今回の分析では、この地域で盛んな漁業に
による漁獲の評価や漁業生産では回収できない窒素、リン
の挙動、すなわち海底への沈降、外海域への流出、製粉
などについては検討できなかったので、今後の課題とし
たい。

要約
・伊勢・三河湾における漁業生産による窒素、リン回収
量の発生負荷量に対する割合を、1979年、1984年、1989
年、1994年、1999年、2004年の6ヶ年について計算し
た結果、窒素で2.96～5.03％（平均4.17％）、リンで4.88
～8.66％（平均7.21％）であった。

・漁業生産による窒素、リン回収量（2004年）は、愛
知県、三重県、岐阜県の下水道処理施設における回収量
のそれぞれ9.1％、9.7％に相当した。
・伊勢・三河湾における漁業生産による窒素、リン回収
率は、東京湾の最盛期である1960年当時の数値に
近く、現在でも、高いレベルで物質循環の補完的機能を
果たし、伊勢・三河湾の水質浄化に大きく貢献している
ことが示唆された。

謝辞
この報告のとりまとめに当たっては、水生学会の水産実
氏に文献等の助言をいただきました。ここに敬意を申し上げ
ます。また、本稿をとりまとめにあたり、有意義な議論
と助言をいただいた（独）水産総合研究センター漁業研
究所の日向野純也博士に深謝いたします。

文献
1) 日本学術会議 (2004) 地球環境・人間生活にかかわる水
産業及び漁村の多面的機能の内容及び評価について
（答申）。
2) 水野知己 (2003) 負荷の発生量および漁業・養殖による
回収量。伊勢湾の生態系の回復に関する研究.3-6、三
重県科学技術振興センター。
3) 環境省 (2007) 化学的酸素要求量、窒素含有量及びリ
ン含有量に係る総量削減基本方針（第6次）の概要。
4) 科学技術庁資源調査会 (2000) 五訂日本食品標準成分
表、財務省印刷局。
5) 尾形 博 (1995) 養殖ガイドラインの作成について。魚
類養殖対策調査事業報告書、社団法人全国かん水魚協
会、44-54。
6) ホタテガイの基盤中のリン含有量について；(株)百
武UP、青森県鰺養殖ホタテ貝粉成分。
7) (社)漁業情報サービスセンター (2005) 東京湾の漁業と
資源（その今と昔）。8
8) 水生学会 (2005) 平成16年度水産業・漁村の多面的機能
支援化委託事業報告書（漁業の物質循環機能と水質環
境）。
Changes in the catch volume and species caught by small-scale trawl fisheries in Ise Bay

FUNAKOSHI Shigeo

Abstract: We analyzed the changes in the catch volume and species by small-scale trawl fisheries in Ise Bay over 34 years (from 1973 to 2006) using statistical fishing data from the Toyohama Fish Market in Aichi Prefecture. The total catch remained relatively steady at 1,500 tons annually until 2000, but gradually declined from around 2001, and has been averaging 1,000 tons in recent years. The immediate cause of this decline was thought to be a decrease in the number of fishing boats. A comparison of 2006 with 1973 shows total fish resources available for small-scale trawling to have dropped by 8%, but the total catch efforts fell by 24% because the number of fishing boats and the days operated decreased by 30% and 10%, respectively. We obtained deviation values from the 34-year average catch of the 18 most important species and studied how the catch has changed over time. The results are that the 18 species were classified into five groups. The overall tendency was for mantis shrimps, prawns, crabs, and fish in the bottom layer such as flatfish to decline, and for squid, octopuses, and fish in the mid-layer, like Japanese sea bass that are strong swimmers, to rise. The species caught during these periods are indicative of a deterioration of the environment near the seabed of Ise Bay due to anoxic water mass and sludge accumulation in the summer.

キーワード: 伊勢湾, 小型底びき網漁業, 漁獲物の変遷

伊勢湾は日本を代表する閉鎖的内海であるとともに,沿岸漁業の盛んな海域である。しかし, 夏季を中心に発生する赤潮や酸素水塊, あるいは海水土砂と埋め立て問題など漁場環境に係わる多くの問題を抱えている。こうした中, 近年, 主に環境面からの伊勢湾再生方策についての検討が行われ, 社会的関心も強くなってきている。もっとも伊勢湾の環境再生の主要な目的は, 豊かな生態系の再生であり, 漁業生産の活性化である。しかし, 現状は環境研究に対して漁業や漁業生産の面からの伊勢湾の研究は少ない。伊勢湾の魚介類資源の現状や変遷が明らかになれば, 環境研究との連携により, より実証した伊勢湾再生方策のとりまとめが可能になると考えられる。海域の魚介類資源の変遷を明らかにする有力な方法は, 長期間にわたって漁獲統計を解析することである。特に小型底びき網漁業のように, 魚介類選択性の低い漁業の統計は, 海域の生物相をよく反映していると考えられる。幸いなことに, 伊勢湾における小型底びき網漁業（通称まえ板漁業）の最大の水揚げ地点である豊浜市場には, 長い年月にわたって整備された漁獲統計資料が保存されている。このまえ板漁業の統計は, 漁場が狭義の伊勢湾に限定されるので, 伊勢湾の漁業生物の変遷をよく反映していると考えられる。まえ板漁業は, 15 トン未満の漁船, 多くは 10 〜 12 トンの漁船により操業される。開口板を使ってえい網, 底層及び中底層の魚介類を漁獲する漁業漁法である。魚取り部位の網の目合は海域差があるが, おおむね 12 〜 16 節が使われ, 小はえ
びせんべいに使うサルエビなど小型エビ類から、大は大型のスズキまで漁獲するので、漁獲物は海域の生物相をよく代表していると考えられる。この報告では、豊浜市場の板漁業の漁獲統計資料の解析を通じて、伊勢湾の底層及び中底層の魚介類の変遷を明らかにしたい。

材料と方法
豊浜市場の漁獲統計資料の内、板漁業の 1973 年～2006 年の 34 年分（一部解析は 2005 年までの 33 年分）について、総漁獲量、種類別漁獲統計及び漁船統計を整理した。まめ板漁業の漁船数は、高齢化や後継者が難などで経年的に減少しているので、漁業全体の漁獲量の経年変化を見るために、漁船数が安定していた 1973 年～1987 年の 77 隻を基準に、各年の漁獲量を漁船数で補正した。次に、主要な漁獲対象種について、漁獲量を漁船数で補正し、それぞれについて 34 年間の平均値からの偏差をもと経年変化を見た。次に、漁獲物変遷の大きな流れを明らかにするために、年毎に漁獲量割合が上位 10 位までの種類を抽出し、これらを漁業者の情報をもとに便宜的に中底層魚、底層魚、エビ・カニ、イカ・タコの 4 グループ（表 1）に分けて、それぞれの割合を算出し経年変化を見た。種名等は市場での呼び名を用いた。また、漁獲物の栄養段階の変遷を見るために、多々良(2)の分類を基本にして、漁獲量の上位 10 位までの種類を基礎生産系とデトリタス系のそれぞれの 1 ～ 3 の栄養段階に分類し（表 2）、2 つのグループのそれぞれについて年毎に、漁獲量割合に対する加重平均値として栄養段階をもと経年変化を見た。

結果
(1) まめ板漁業の漁獲量の経年変化
漁獲量は 2000 年頃までは 1,500 トン前後の水準で比較的安定していたが、2001 年以降減少し、近年ではそれまでの 2/3 の段階を 1,000 トンの水準となっている（図 1）。この間の漁船数の推移を見ると、1973 年～1987 年の 15 年間は約 77 隻で安定していたが、それ以降は高齢化や乗組員不足、経営の低迷などの理由により漸減し、54 隻まで減った。図 1 には、1973 年から 1987 年の 15 隻を基準に、各年の漁獲量を漁船数で補正した値も示したが、この補正漁獲量で見ると 2000 年までの 1,500 トンの水準が推移している。次に、漁獲量の原データからまめ板漁船１隻当たり漁獲量を算出すると、過去 34 年間、ほぼ 20 トン前後で比較的安定していた（図 2）。このことは漁船が 1 隻減少すると、まめ板漁業全体の漁獲量が約 20 トン減少することを示している。

(2) 主な漁獲物の漁獲量経年変化
33 年間に漁獲量が上位 10 位までに入った種類は表 1 の 28 種類であった。各年の詳細は別表に示し、このうち漁獲量が最上位になった種類は、シャコ、サルエビ、マアナゴ、アジ（マアジ、マルアジ）、スズキ、カマス（アカカマス）の 6 種類で、内訳はシャコ 20 回（60.6 ％）、サルエビ 4 回（12.1 ％）、マアナゴ 3 回（9.1 ％）、アジ 3 回（9.1 ％）、スズキ 2 回（6.1 ％）、カマス 1 回（3.0 ％）であった。シャコは全体の約 60 ％を占め、まめ板漁業にとって特に重要なものであることがわかる。一般に小型底びき網漁業は多種多様な魚介類を漁獲し経営を維持していると言われるが、伊勢湾のま

<table>
<thead>
<tr>
<th>表 1 漁獲物の区分</th>
</tr>
</thead>
<tbody>
<tr>
<td>分類</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>底層魚</td>
</tr>
<tr>
<td>イカ・タコ</td>
</tr>
<tr>
<td>エビ・カニ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表 2 漁獲物の食物連鎖系及び栄養段階の区分</th>
</tr>
</thead>
<tbody>
<tr>
<td>種類</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>基礎生産系</td>
</tr>
<tr>
<td>デトリタス系</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>分類</th>
<th>植物プランクトン食</th>
<th>食物プランクトン食</th>
<th>食</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
図1 まめ板漁業の漁獲量と漁船数の経年変化

図2 まめ板漁船1隻当たり漁獲量の経年変化

図3 上位10種の漁獲量割合の累計

沖縄県では、33年平均で1位から3位までの漁獲率で47.9%と約50%を占め、5位までで61.8%と60%を超える。10位まででは79%にもなる（図3）。このうち漁獲割合が60%を超える5位までの14種に加え、経緯的に重要なトラフグ、キス（シロギス）、クルマエビ、ヨシエビを含めた合計18種類について個別に34年間の平均値からの偏差をもとめる経年変化を見た（図4）。これら漁獲量の経年変化は5つのタイプに区分できる。

第1は1970年代に増えた種類である。これはハゼ（オカハゼ中心）、カレイが含まれる。この2種は、その後、長期的に漁獲量は低迷し、増加の兆しはない。

第2は1980年代に増えた種類である。これはシャコ、クルマエビが含まれる。1990年代に入ってからの
1 1970 年代に増えた種類

2 1980 年代に増えた種類

3 1990 年代に入って増えた種類

図 4 主要魚介類 18 種類の 34 年平均値からの偏差の経年変化（単位：トン）