発色酵素基質培地によるNocardia seriolaeのalpha-グルコンダーゼ活性の検出と薬剤感受性の推定
The Use of Chromogenic Media for α-Glucosidase Determination and Presumptive Drug Susceptibility Profiles in the Fish Pathogen Noccardia seriolae

Tamer Fawzy Ismail¹², Akira Takeshita³, Naoko Umeda⁴, Toshiaki Itami⁵ and Terutoyo Yoshida¹⁵

¹Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
²Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University Giza, 12211, Egypt
³Kurose Suisan Kaisha Ltd., Miyazaki 888-0012, Japan
⁴Marine Biological Technology Center, Nippon Suisan Kaisha Ltd., Oita 876-1204, Japan
⁵Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan

(Received January 11, 2011)

ABSTRACT—The utility of chromogenic media for determination of α-glucosidase (α-glu) activity in 116 Noccardia seriolae isolates was investigated. In all isolates, the results obtained using chromogenic media were identical to those of the API ZYM test. All the α-glu-positive isolates (n = 27) were erythromycin (Em)-sensitive, and more than half of them (n = 18) were oxytetracycline (OTC)-resistant. On the other hand, all the α-glu-negative isolates (n = 89) were OTC-sensitive, and most of them (n = 81) were Em-resistant. These results supported the relationship between the α-glu activity and drug susceptibility profiles in N. seriolae. Therefore, chromogenic media can be used as a simple and reproducible one-step test to determine the α-glu activity and presumptive drug susceptibility profiles in N. seriolae.

Key words: Noccardia seriolae, chromogenic medium, α-glucosidase, drug susceptibility, oxytetracycline, erythromycin

In recent epidemiological studies, Noccardia seriolae isolates have been typed based on both phenotypic characteristics using α-glucosidase activity, and genotypic characteristics using biased sinusoidal field or pulsed-field gel electrophoresis. N. seriolae isolates can be divided into α-glu-positive and α-glu-negative isolates. Many Japanese isolates were α-glu-positive, whereas many Taiwanese isolates were α-glu-negative. The α-glu-positive and -negative phenotypes show different electrophoretic patterns, and belong to epidemiologically unrelated clusters. Therefore, the α-glu test is considered an important marker for investigating the epidemiology of N. seriolae strains.

The use of chromogenic media has become a key method for the rapid identification of microorganisms and the diagnosis of clinical samples. ChromID MRSA (bioMérieux, Marcy l’Etoile, France) is a chromogenic medium that was designed for the isolation and presumptive identification of Staphylococcus aureus. A chromogen in ChromID MRSA medium serves as a substrate for S. aureus α-glu; the reaction results in the formation of green-colored colonies.

The purpose of the present study was to evaluate the utility of ChromID MRSA for determining the α-glu activity of N. seriolae. In addition, we further explore the epidemiological relationship between α-glu activity and oxytetracycline (OTC)/erythromycin (Em) susceptibility profiles in N. seriolae isolates collected from six prefectures in Japan between 2000 and 2007.

Materials and Methods

Bacterial strains

One hundred and sixteen N. seriolae isolates were collected from six prefectures in Japan between 2000 and 2007. The N. seriolae isolates were isolated from diseased amberjack Seriola dumerili (n = 81) and yellowtail Seriola quinqueradiata (n = 35). Primary isolation was performed using Ogawa medium (Nissui, Tokyo, Japan), Brain Heart Infusion agar (BHA; Difco, Michigan), or Todd Hewitt agar (THA; Difco, Michigan). After being sub-cultured for isolation of pure colonies, all isolates were cultured in Todd Hewitt broth, and were maintained at -80°C until use. Pure colonies obtained on the agar plates were subjected to Gram and Ziehl-Neelsen staining. All isolates were Gram-positive, acid-fast filamentous or branching bacilli as observed by light microscopy. They showed a positive reaction in the species-specific PCR targeting of the 16S rRNA gene, as previously described.

Alpha-glu activity

The API ZYM test (bioMérieux, Marcy l’Etoile, France) was used to detect α-glu activity as previously described. Two types of agar plates were used, namely, ChromID MRSA, which is a ready-to-use commercially available medium, and an in-house-developed differential X-Glu medium consisting of Mueller-Hinton agar (Difco, Michigan, USA) supplemented with 0.1 g/L X-alpha-D-glucoside (Glycosynth Ltd, Warrington, UK). All isolates (n = 116) were inoculated on both types of agar plates, and were incubated at 25°C for seven days.
The development of coloration was observed daily.

Antimicrobial susceptibility testing

The minimum inhibitory concentrations (MICs) for OTC and Em were determined using the broth microdilution method as previously described\(^4\). The type strains *N. seriolae* ATCC43993 and *N. seriolae* JCM3361 were used as controls for the validation of the identification scheme. The MIC was defined as the lowest concentration of the antimicrobial agent that inhibited visible growth.

Results and Discussion

The \(\alpha\)-glu activity of the 116 *N. seriolae* isolates was determined using the API ZYM test (Table 1), and 27 isolates (27.3%) isolated from amberjack were \(\alpha\)-glu positive (Fig. 1A), whereas 89 isolates (76.7%) were \(\alpha\)-glu negative (Fig. 1B). Of the 89 \(\alpha\)-glu-negative isolates, 35 were isolated from yellowtail and 54 were from amberjack. With respect to the year of isolation, the \(\alpha\)-glu-negative isolates were collected in all 8 years of the study. The \(\alpha\)-glu-positive isolates were collected in 2002, 2004, 2006, and 2007, and the number of isolates collected in these years was eight, six, three, and ten, respectively. These results support the previously reported prevalence of the negative \(\alpha\)-glu phenotype in Japan\(^1,^2,^3\).

On the ChromID MRSA medium, \(\alpha\)-glu-positive *N. seriolae* isolates appeared as green colonies, whereas \(\alpha\)-glu-negative isolates formed yellowish-white colonies (Fig. 1C). On the X-Glu medium, \(\alpha\)-glu-positive isolates appeared as blue-green colonies, whereas \(\alpha\)-glu-negative isolates formed yellowish-white colonies (Fig. 1D). For all isolates tested, the results obtained using the ChromID MRSA and X-Glu media were identical to those obtained using the API ZYM test. On the chromogenic media, rapid color development indicative of \(\alpha\)-glu-positive activity was observed within 2 to 3 days of culturing. No color change of the media observed during the same period was indicative of \(\alpha\)-glu-negative activity. For the API ZYM test, as recommended by the manufacturer, the bacteria must be cultured for at least 6 days on BHIA or THA because a highly concentrated bacterial suspension with a turbidity of McFarland no. 5–6 is required to obtain reproducible results. Therefore, chromogenic media are useful and simple culture-based tests for laboratories and farms that screen the \(\alpha\)-glu activity of *N. seriolae*.

In antimicrobial susceptibility tests, the isolates were classified into sensitive and resistant to the tested antibiotics according to the criteria previously described\(^4\). Table 1 shows the detailed OTC/Em susceptibility profiles of all isolates along with their \(\alpha\)-glu activities and year of isolation.

Irrespective of the year of isolation, the *N. seriolae* isolates belonged to three OTC/Em susceptibility profiles as follows: (1) nine \(\alpha\)-glu-positive and eight \(\alpha\)-glu-negative isolates were both OTC-sensitive and Em-sensitive.
sitive (S/S) with MICs of 2–4 and < 0.125 μg/mL, respectively; (2) 18 α-glu-positive isolates were OTC-resistant and Em-sensitive (R/S) with MICs of 32–64 and < 0.125 μg/mL, respectively; and (3) 81 α-glu-negative isolates were OTC-sensitive and Em-resistant (S/R) with MICs of 2–4 and > 128 μg/mL, respectively. No α-glu-positive or -negative isolates were resistant to both antibiotics tested. All the α-glu-positive isolates (n = 27) were Em-sensitive, and more than half of them (n = 18) were OTC-resistant. On the other hand, all the α-glu-negative isolates (n = 89) were OTC-sensitive, and most of them (n = 81) were Em-resistant. In our previous study, the same susceptibility profiles were observed except for one difference. In the previous study, the S/S susceptibility profile was only observed in two α-glu-negative isolates isolated from amberjack (2/110, 1.8%); however, in the present study, the S/S susceptibility profile was observed in nine α-glu-positive isolates isolated from amberjack in 2004 and 2006 and in eight α-glu-negative isolates isolated from amberjack and yellowtail in 2000 and 2005–2007 (17/116, 14.7%). The small number of the S/S susceptibility profile isolates in 2008 may support the environmental selection pressure that was proposed in our previous study. These results confirm the relationship between the α-glu activity and susceptibility profiles to OTC and Em in *N. seriolae*.

This study showed that chromogenic media could be used as simple and reproducible one-step epidemiological tests to determine the α-glu activity for presumptive drug susceptibility profiles in *N. seriolae*.

Acknowledgments

This study was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Culture, and Sports, Japan (21580229). The first author is grateful to the Ministry of High Education, Egypt, for its financial support as a part of the scholarship for his PhD degree.

References

発色酵素基質培地による Nocardia seriolae の α-グルコンダーゼ活性の検出と薬剤感受性の推定

T. F. Ismail・竹下 剛・梅田奈央子
伊丹利明・吉田昭豊

発色酵素基質培地で N. seriolae の α-グルコンダーゼ（α-glu）活性の検出を試みたところ、アビザイムで行った結果と一致した。2001～07年に分離されたカンバチ及びブル由来株の内、α-glu 活性陽性の27株はすべてエリスロマイシン（Em）感受性で、内18株がオキシテトラサイクリン（OTC）耐性であった。陰性の89株はすべて OTC 感受性で、内81株が Em 耐性であった。α-glu 活性と薬剤感受性プロフィールとの関連が認められた。

魚病研究 46 (2), 62–64 (2011)