道央地域における秋まき小麦「きたほなみ」の高品質安定栽培法

<table>
<thead>
<tr>
<th>誌名</th>
<th>北農</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSN</td>
<td>00183490</td>
</tr>
<tr>
<td>著者</td>
<td>中村, 隆一 後藤, 英次 杉川, 陽一 武田, 尚隆 渡邉, 祐志 志賀, 弘行</td>
</tr>
<tr>
<td>巻/号</td>
<td>78巻3号</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 299-304</td>
</tr>
<tr>
<td>発行年月</td>
<td>2011年7月</td>
</tr>
</tbody>
</table>
<試験成績・研究成果>
道央地域における秋まき小麦「きたはなみ」の高品質安定栽培法

中村 隆一* 後藤 英次* 杉川 陽一*
武田 尚隆** 渡邉 祐志*** 志賀 弘行*

要 旨
道央地域の秋まき小麦は、道東地域より収量水準が低く、新品種「きたはなみ」においても倒伏するため、一筋の安定生産が求められている。

「きたはなみ」の標準施肥体系は4-6-0-4（基肥－起生期－幼形形成期－成熟期，単位：kg-N/10 a，以下同じ）であり，低タンパクが懸念される場合は，更に幼形形成期の追肥（上限4 kg-N/10 a）や，開花後に葉面散布するが，しかし，施肥体系は土壌型や生育特性別に設定されておらず，開花期以後の葉面散布の必要性を検討した。

そこで，「きたはなみ」の倒伏防止と子実タンパク含有率（以下，タンパク含有率と略記）の安定化を目的に，起生期以後の施肥法を検討した。

2. 方法
1)「起生期無機態窒素診断」の道央地域への適用の可能性の検討
平成20～22年に関東などの道央地域の80圃場（表1）において，起生期に60cm深までの土壌無機態窒素量，20cm深までのが熱水抽出性窒素含有量を調査した。

* 近畿生 中央農業試験場 Rūichī NAKAMURA，
** 農政部 技術普及課長技術普及室 Naotaka TAKEDA
*** 農業研究本部 企画調整部 Yuji WATANABE

Adjustment of nitrogen application rate for winter wheat 'Kitahonami' in central part of Hokkaido district, according to the number of stalks or soil types.

北 農 第78巻 第3号 (2011年7月) 299
－55－
表1 「起生期無機態窒素診断」の実施地域への適用の可能性を検討した圃場数

<table>
<thead>
<tr>
<th>地域区分</th>
<th>土 埴</th>
<th>高さ</th>
<th>市町村名</th>
</tr>
</thead>
<tbody>
<tr>
<td>内浦湾・板屋海岸および石狩の一部</td>
<td>火山性土</td>
<td>6</td>
<td>坂戸</td>
</tr>
<tr>
<td>北海道</td>
<td>黒土性土</td>
<td>2</td>
<td>北海道</td>
</tr>
<tr>
<td>日本</td>
<td>各地</td>
<td>0</td>
<td>各地</td>
</tr>
<tr>
<td>石狩中央部および空知南部</td>
<td>火山性土</td>
<td>18</td>
<td>石狩</td>
</tr>
<tr>
<td>空知中央部</td>
<td>黒土性土</td>
<td>12</td>
<td>恵庭</td>
</tr>
<tr>
<td></td>
<td>黒土性土</td>
<td>8</td>
<td>恵庭</td>
</tr>
</tbody>
</table>

2) 高品質・安定生産のための起生期生育量・土壌型に応じた施施肥法の策定

平成19〜21年に中央農業試験場岩見沢試験地（低地土，泥炭土）と長沼試験地（客土低地土：火山灰客土）において，播種期（早期，適期，晚期）と播種量（170〜255粒/m²）を変えて起生期窒素量が異なる圃場を作り，窒素施施肥法（4-6-4, 2-0-4, 4-6-0-4）が穀重，収量（穀子重量），倒伏，タンパク含有率，窒素吸収量に及ぼす影響を調査した。

次いで，平成20〜22年に，1)の供試圃場毎に起生期以後の窒素追肥量を変えた処理区を設け（反復2〜3）, 穀重，倒伏，収量，タンパク含有率，窒素吸収量を調査し，起生期の窒素に応じた施肥体系の妥当性を土壌型毎に調査した。

3) 開花期以後の葉面散布の要否判定

1)の供試圃場毎の，標準施肥体系で栽培し，開花期に尿素液を2〜3 kg/10a葉面散布した区に有する25株において，出穂期の第2穂を対象にした葉色や葉面散布とタンパク含有率との関係を調査した。

3. 結 果

1)「起生期無機態窒素診断」の実施地域への適用の可能性の検討

0〜60cm深の硝酸態窒素量は平均0.8kg/10a，無機態窒素量は平均5.6kg/10aと十数地点と同程度含まれ，熟抽窒素含量は平均0.6mg/100gであり（表2），泥炭地で多く，台地で少なかった。

表2 適用地域の小蛮探の起生期土壌窒素量の実態

<table>
<thead>
<tr>
<th>窒素施施肥法（kg/10a）</th>
<th>0〜60cm深</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壌</td>
<td>台地土</td>
</tr>
<tr>
<td>平均値</td>
<td>2.6a</td>
</tr>
<tr>
<td>最小値</td>
<td>1.5</td>
</tr>
<tr>
<td>最大値</td>
<td>4.1</td>
</tr>
</tbody>
</table>

窒素供給量と秋まき小麦の収穫期における窒素吸収量との関係（関東地域）

注)窒素供給量（起生期硝酸態窒素量（0〜60cm深）+起生期以後の窒素追肥量）

図1 窒素供給量と秋まき小麦の収穫期における窒素吸収量との関係（関東地域）
作土の熱水抽出窒素含量と収穫期の窒素吸収量とは無相関であった（データを示さず）。
2) 高品質・安定生産のための施設体系の策定
(1) 標準窒素施肥対応が可能な起生期茎数の検討
標準窒素施肥体系において、穗数700本/m²以下、窒素吸収量17kg/10a未満で3), 倒伏を回避した起生期茎数は概ね1,200本/m²未満であり、700kg/10a以上の収量を確保できたのは同じく800本/m²以上であった（図2-1、図2-2、2010年：異常高温年を除く）。このような、標準窒素施肥対応が可能な起生期茎数は800〜1,300本/m²であった。
起生期茎数が異なる圃場における窒素施肥体系が穂数、倒伏程度、収量性やタンパク含有率に及ぼす影響を表3に示した。
起生期茎数が800本/m²未満の場合、標準施肥体系+幼期期4kg/10a増施により、倒伏程度を変えず、穂数、収量、タンパク含有率、窒素吸収量を増加できた。穂数、窒素吸収量およびタンパク含有率の平均値は適正な範囲にあり、収量は適正茎数・標準施肥（759kg/10a）の99%を確保できた。
起生期茎数が1,300本/m²以上の場合、標準施肥

図2-1 標準窒素施肥体系における起生期茎数と穂数（左図）、倒伏程度（右図）の関係

図2-2 標準窒素施肥体系における起生期茎数と収穫期窒素吸収量（左図）、収量（右図）の関係

<table>
<thead>
<tr>
<th>起生期茎数 (本/m²)</th>
<th>N施肥 (kg/10a)</th>
<th>区数</th>
<th>基肥</th>
<th>起生期</th>
<th>幼期期</th>
<th>成熟期</th>
</tr>
</thead>
<tbody>
<tr>
<td>800未満</td>
<td></td>
<td></td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>800〜1,300</td>
<td></td>
<td></td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1,300以上</td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

表3 起生期茎数に対応した施肥体系の効果

<table>
<thead>
<tr>
<th>起生期茎数 (本/m²)</th>
<th>N施肥 (kg/10a)</th>
<th>区数</th>
<th>基肥</th>
<th>起生期</th>
<th>幼期期</th>
<th>成熟期</th>
<th>施肥区平均値</th>
</tr>
</thead>
<tbody>
<tr>
<td>800未満</td>
<td></td>
<td>9</td>
<td>547</td>
<td>677</td>
<td>0.2</td>
<td>43.2</td>
<td>835 10.3 14.2</td>
</tr>
<tr>
<td>800〜1,300</td>
<td></td>
<td>6</td>
<td>615</td>
<td>748</td>
<td>0.2</td>
<td>42.4</td>
<td>853 10.9 16.2</td>
</tr>
<tr>
<td>1,300以上</td>
<td></td>
<td>9</td>
<td>699</td>
<td>759</td>
<td>0.1</td>
<td>41.7</td>
<td>835 10.1 15.6</td>
</tr>
</tbody>
</table>

- 57 -
肥体系から起生期 4 kg/10 a 減肥により，収量，タンパク含有率を確保しつつ，倒伏程度を0.5ポ
インド軽減でき，灌漑吸収量，糖度も減少できた。
しかし，倒伏程度は平均0.8であり，糖度は742本

図 3-1 N施肥体系が穂数，倒伏程度，タンパク含有率，N吸収量に及ぼす影響（台地土）
図 3-1 N施肥体系が穂数，倒伏程度，タンパク含有率，N吸収量に及ぼす影響（台地土）
注）右図：穂数（黒枠）
右図：倒伏程度（白枠，0：無倒伏～5：全倒伏）
N吸収量（△），タンパク含有率（○）
図下の（ ）内数字は起生期基準を表し，年号前の数字は糖度を表す。
図中の矢印：穂数 700本のライン，同点検棒（上）：灌漑吸収値70kg以上，同点検棒（下）：タンパク含有率基準値（9.7～11.3%）を表す。
この図4，図3-2，図4-3も同様。

図 3-2 N施肥体系が穂数，倒伏程度，タンパク含有率，N吸収量に及ぼす影響（隠地土）
/m²と適正値より多く、改善効果は限られた。

このように、起生期に適正基数・標準施肥がベストであったが、基数が適正域以外でも、幼形期までの追肥適調で、倒伏や収量性を改善できた。

(2) 起生期基数に対応した窒素施肥体系の設定

起生期以後の窒素施肥体系と従数、窒素吸収量、タンパク含有率、倒伏程度の関係を、土壌型別に図3-1から図3-3にまとめた。

① 台地土

台地土は、他の土壌より基数や窒素吸収量が少なかった。起生期の基数が1,300本/m²未満では4-10-4-4ほど窒素過剰傾向であり、4-6-4-4で従数、タンパク含有率、窒素吸収量は目標値内を示した。

起生期基数が1,300本以上では4-6-4-4ほど窒素含有量が18kg/haに達し、倒伏が認められ、4-6-0-4で各項目は適正値となり、倒伏も抑えられた。

このように、台地土では1,300本/m²を境に、幼形追肥量の調整で、倒伏や収量性を改善できた。

② 低地土

起生期基数が800〜1,300本/m²では、4-6-4-4でタンパク含有率、または、窒素吸収量からみて窒素過剰であり、一方、4-6-0-4は従数、窒素吸収量から見て倒伏の危険性はなく、タンパク含有率も基準値以内であった。

起生期基数が800本/m²未満では、4-6-4-4の施肥体系でも従数は概ね700本/m²以下であり、作土の熱水抽出性窒素含量が高い圃場（H21 深川：10.5mg, H20深川：8.6mg, H20深川：9.0mg）を除き、含量が適正で一般的な圃場（H20深川、4.1mg）では、窒素吸収量やタンパク含有率もほぼ適正域であるので、幼形期まで追肥が望ましかった。

起生期基数が1,300本/m²以上の場合、4-6-0-4の施肥では従数が適正域を超え窒素過剰で、4-2-0-4で各項目とも適正域となり望ましかった。

表4 低地土における就冬前積算気温

| 地点 | 年 | 植栽気温 | 起生期基数 | 適正基数施肥体系（℃） | (木/㎡ (基準基数)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

以上のように、低地土では起生期基数が800〜1,300本/m²では4-6-0-4が望ましく、これ以外は幼形期までの追肥量の増減が必要であった。

③ 泥炭土

起生期基数が1,300本/m²以上では4-6-0-4以下が望ましかった。1,300本/m²未満では越冬前の有効積算気温が高い圃場ほど、望ましい施肥量は少なく（表4）、有効積算気温520〜640℃（播種適期）が望ましい。
3）開花期以後の葉面散布の要否判定

開花期以後に窒素3kg/10aを葉面散布することで、収量は30kg/10a、収穫率は1.4kg/10a、タングク含有率は0.5％、それぞれ有意に増加した（データ示さず）。タングク含有率は出穂期の葉色と正の相関関係にあった（図4）。タングク含有率が10.5％（葉色50）以上では、葉面散布によりタングク含有率が0.7％高まると示され、これが基準値上限を超える。したがって、出穂期の葉色50以上では開花期以後の尿素葉面散布は不要であった。

起生期の茎数が800本/㎡未満の場合は、台地土を除き、幼苗期に最大4kg/10aの増肥が、一方、1,300本/㎡以上では起生期4kg/10a程度の減肥が有効であった。なお、起生期茎数が不足と過多を比較すると、茎数過多では倒伏の恐れが若干残り、収量も茎数不足の場合より劣ることから、適期に播種できない場合は、晩期播種の方が早期播種よりも収量の対応がとりやすいと考えられた。適期播種でも、越冬前が平均より高気温の場合は、茎数過多への対応が有効と考えられた。

なお、熟水抽出性窒素含量が高い（8mg/100g以上）圃場は窒素吸収量が多くタングク含有率が高いので、土壌窒素含量に応じた追肥量の調整法の検討が今後必要であろう。

図4 出穂期の葉色と子実タングク濃度との関係
（窒素施肥：4604kg/10a、葉面散布なしのデータで作図）

4. 考察

1) 道央地域への起生期無機態窒素診断の適応性について

道央地区には無機態窒素診断が適用できない泥炭土が広く分布する。また、物理性に劣る、診断精度が劣る台地土や水田間敷土も広く分布する。後者土壌は、土壌無機態窒素の吸収性が劣るため、無機態窒素量に応じて減肥すると、予想以上に窒素吸収量が抑えられ低収、低タングクとなる恐れがある。したがって、道央地域に広く起生期無機態窒素診断を適応することは困難と考えられた。

2) 道央地域に対する窒素追肥の設定

標準窒素追肥体系（4-6-0-4 kg/10a）が適応可能な起生期の茎数は、800-1,300本/㎡であった。ただし、台地土は、根張りが劣り地力が低く、倒伏せず、窒素吸収量や穂数が他の土壌よりも少ないため、幼苗期に窒素4kg/10aを追肥して穂数を確保することが適当であった。

4604kg/10a
800-1,300本/㎡

図1 出穂期の葉色と子実タングク濃度との関係
（窒素施肥：4604kg/10a、葉面散布なしのデータで作図）

4) 道央地域への起生期無機態窒素診断の適応性について

道央地区には無機態窒素診断が適用できない泥炭土が広く分布する。また、物理性に劣る、診断精度が劣る台地土や水田間敷土も広く分布する。後者土壌は、土壌無機態窒素の吸収性が劣るため、無機態窒素量に応じて減肥すると、予想以上に窒素吸収量が抑えられ低収、低タングクとなる恐れがある。したがって、道央地域に広く起生期無機態窒素診断を適応することは困難と考えられた。

3）開花期以後の葉面散布

葉面散布により窒素吸収量や収量も増加したが、その主目的はタングク含有率の増加にある。一般に、小麦では展開第2葉（葉緑下葉）の葉色から窒素栄養状態を判定することがあるが、本試験の結果から、「きたはなし」においても出穂期の葉色でタングク含有率を推定できることが明らかとなった。

4. 考察

1) 道央地域への起生期無機態窒素診断の適応性について

道央地区には無機態窒素診断が適用できない泥炭土が広く分布する。また、物理性に劣る、診断精度が劣る台地土や水田間敷土も広く分布する。後者土壌は、土壌無機態窒素の吸収性が劣るため、無機態窒素量に応じて減肥すると、予想以上に窒素吸収量が抑えられ低収、低タングクとなる恐れがある。したがって、道央地域に広く起生期無機態窒素診断を適応することは困難と考えられた。

2) 道央地域に対する窒素追肥の設定

標準窒素追肥体系（4-6-0-4 kg/10a）が適応可能な起生期の茎数は、800-1,300本/㎡であった。ただし、台地土は、根張りが劣り地力が低く、倒伏せず、窒素吸収量や穂数が他の土壌よりも少ないため、幼苗期に窒素4kg/10aを追肥して穂数を確保することが適当であった。

4604kg/10a
800-1,300本/㎡

図1 出穂期の葉色と子実タングク濃度との関係
（窒素施肥：4604kg/10a、葉面散布なしのデータで作図）

4) 道央地域への起生期無機態窒素診断の適応性について

道央地区には無機態窒素診断が適用できない泥炭土が広く分布する。また、物理性に劣る、診断精度が劣る台地土や水田間敷土も広く分布する。後者土壌は、土壌無機態窒素の吸収性が劣るため、無機態窒素量に応じて減肥すると、予想以上に窒素吸収量が抑えられ低収、低タングクとなる恐れがある。したがって、道央地域に広く起生期無機態窒素診断を適応することは困難と考えられた。

3）開花期以後の葉面散布

葉面散布により窒素吸収量や収量も増加したが、その主目的はタングク含有率の増加にある。一般に、小麦では展開第2葉（葉緑下葉）の葉色から窒素栄養状態を判定することがあるが、本試験の結果から、「きたはなし」においても出穂期の葉色でタングク含有率を推定できることが明らかとなった。

謝辞

本研究は、北海道米麦改良協会の協力の下、石狩・空知・後志・胆振・日高各管内の農業改良普及センターと共に行った。記して謝意を表する。

引用文献

1）北海道農政局（2006）：秋まき小麦（系統名・北見81号）、平成18年普及奨励ならびに指導参考事項、7-9
2）社団法人 北海道米麦改良協会（2011）：北海道の小麦作り（平成23年）、1
3）北海道農政局（2008）：めん用秋まき小麦「きたはなみ」の高品質安定栽培法、平成20年普及奨励ならびに指導参考事項、67-69
4）北海道農政局（1999）：土壌診断による秋まき小麦の窒素施肥量の設定、平成11年普及奨励ならびに指導参考事項、236-238
5）北海道農政局（2005）：秋まき小麦の起生期無機態窒素診断による窒素追肥法、平成17年普及奨励ならびに指導参考事項、118-120

11-60