Phytophthora citrophthoraによるショウガ疫病（新称）

<table>
<thead>
<tr>
<th>誌名</th>
<th>日本植物病理學會報 = Annals of the Phytopathological Society of Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSN</td>
<td>00319473</td>
</tr>
<tr>
<td>著者</td>
<td>山崎, 睦子 松岡, 弘明 矢野, 和孝 森田, 泰彰 植松, 清次 竹内, 繁治 有江, 力</td>
</tr>
<tr>
<td>巻/号</td>
<td>77巻4号</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 299-303</td>
</tr>
<tr>
<td>発行年月</td>
<td>2011年11月</td>
</tr>
</tbody>
</table>
**Phytophthora citrophthora**によるショウガ疫病（新称）

山崎 睦子1,5a・松岡 弘明2・矢野 和孝1・森田 泰彰1・植松 清次1・竹内 繁治1,4・有江 力3

ABSTRACT

In 1997, Phytophthora rot caused serious losses to ginger (*Zingiber officinale* Rosc.) production in Kochi Prefecture, Japan. In the field in early summer and autumn, water-soaked rot on basal pseudostems and brown rot on rhizomes were first observed, then plants developed stem blight. The disease also developed on rhizomes stored at 15°C in the dark. A *Phytophthora* sp. was consistently isolated from the symptomatic lesions and caused the same symptoms after inoculation with the isolates. The identical *Phytophthora* sp. was then reisolated. White stellate colonies grew on PDA at a minimum temperature of 10°C, optimum of 23°C and maximum of 30°C. Sporangia were ovoid, ellipsoid, globose and distorted (variable) with one or two apices, noncaducous, 30–90 x 20–50 (average 50.0–56.1 x 25.0–32.6) μm, with a length to breadth ratio of 1.5–1.7:1. Nucleotide sequence of the r-DNA ITS regions agreed well with those of *Phytophthora citrophthora* (R. E. Smith and E. H. Smith) Leonian previously reported. Based on these results, the isolate was identified as *P. citrophthora*. This report is the first of a disease of ginger caused by *P. citrophthora*, and we propose the name “Phytophthora rot” for the disease.

(Received May 30, 2011; Accepted August 12, 2011)

Key words: *Phytophthora citrophthora*, *Zingiber officinale* Rosc., disease, Phytophthora rot
Fig. 1. Symptoms of Phytophthora rot of ginger and the morphological characters of causal fungus Phytophthora citrophthora.
A: Water-soaked rot (arrows) on basal pseudostems, B: Pseudostem blight, C: Water-soaked brown rot (circle) on bud and rhizome, D: Water-soaked brown rot on rhizome, E: Water-soaked rot (circle) on basal pseudostems 7 d after inoculation with zoospores (MAFF238159), F: Pseudostem blight 10 d after inoculation with zoospores (ZPM-22), G: White, cottony mycelium covering bud and rhizome 7 d after inoculation with zoospores (T-1-3), H: Water-soaked and brown rot (arrows) on rhizome 7 d after inoculation with zoospores (T-1-3), I: Colony of isolate T-1-3 at 23°C for 10 d on PDA in the dark, J: Ovoid, elipsoid, globose (variable), papillate sporangia of isolate T-1-3, stained with lactophenol cotton blue.
7日後には地際苦燥が褐色水浸状に変色し（Fig.1E）、症状が進行し、根茎が褐色水浸状に変色を呈し（Fig.1C）、表面が白色の菌糸で覆われた（Fig.1G）。

これらの症状はいずれも原病原と一致し、病斑部からは供試菌株と同様な糸状菌が再分離された。以上のことから、分離菌が本病害の病原であることが明らかになった。

病原菌の生態性状を把握するため、各種の供試菌株を用いて、光温湿を条件として、菌糸の生育特性を観察した。供試菌株は、MAFF 238158、MAFF 238159、ZPM-22、T-1-3の4株である。

次に、あらかじめ30℃の恒温器内に約2週間置いて芽を育てたショウ甘麦菌を各供試菌株の遊走子懸濁液に浸漬し、23℃（暗黒）で1日間静置後、ピニール袋内に密閉して25℃、暗黒下に保つ。対照として遊走子懸濁液の代わりに無菌水を用いた。その結果、いずれの菌株を接種した根茎も、接種2日後には芽が淡褐色に変色し、接種7日後には芽端部や根茎表面が白変化したもので覆われた（Fig.1G）。根茎を切断すると内部は褐色水浸状に変色し（Fig.1H）、罹病組織を顕微鏡観察すると無隔壁の菌糸が観察された。

図Fig.2. Mycelial growth of Phytphthora citrophthora isolates MAFF 238158, MAFF 238159, ZPM-22 and T-1-3 from ginger at various temperatures on PDA.
顕著な乳頭突起を有し，遊走子が遊走子のう内で分化して先端から侵入するのが確認されたことから，*Phytophthora* 落菌であると考えられた。さらに 4 株（MAFF 238158，MAFF 238159，ZPM-22，T-1-3）の形態的特徴を調べたところ，調査した各菌株とも遊走子のうの形成様式はシノポジオ型で外部増殖性，形は球形，卵形或いは多面型に富み，顕著な乳頭突起を 1〜2 個有し，非脱落性であった。遊走子のうの大きさは，MAFF 238158 で 35〜90×20〜50 µm（平均 56.1 ± 32.6 µm），MAFF 238159 で 35〜85×20〜45 µm（平均 53.5 ± 31.2 µm），ZPM-22 で 30〜65×20〜40 µm（平均 50.0 ± 25.0 µm），T-1-3 で 30〜65×20〜50 µm（平均 55.0 ± 30.0 µm）, L/B 比はそれぞれ 1.1〜3.0（平均 1.7），1.1〜3.0（平均 1.7），1.0〜2.2（平均1.6），0.9〜2.3（平均 1.5），いずれも乳頭は小さかった（Fig. 1）。いずれの菌株も単独培養では有性器官を形成しなかった。これら形態的特徴は McHau and Coffey（1994）が報告した*Phytophthora citrophthora*（R. E. Smith and E. H. Smith）Leonian とよく一致し，生育適温や有性器官の形成に係わる性状も Erwin and Ribeiro（1996）の記載と一致した。

r-DNA の ITS 領域の塩基配列 Wang and White（1997）の方法を一部改変して供試菌株の DNA を抽出した。V-8 ジョウス寒天培地上で 25°C，10 日間培養後，スパチュラで気中菌糸を約 200 mg かき取り，-80°C で一晩凍結させ，これを-80°C に冷却した乳酸と乳鉱を用いて粉碎し，オーブンメタルアンモニウム（CTAB）緩衝液（1% CTAB，100 mM Tris-HCl-pH 8.0，1.4 M NaCl，20 mM EDTA-pH 8.0，2% PVP-10，0.5% 2-メルカプトエタノール）1 ml に懸濁させた。クロロホルム・イソアミルアルコール（24:1）による精製とイソブロポラールによる沈殿後，トリス-EDTA 緩衝液 100 µl に溶解させて鉄型 DNA とした。White et al.（1990）の方法に従ってプライマー ITS1 および ITS4 を用いて rDNA の ITS 領域を PCR（TaKaRa PCR Thermal Cycler MP，タカラバイオ）で増幅した。得られた約 600 bp の DNA 断片の塩基配列を，シグマアルドリッチジャパン（株）に依頼して解析し，DBDJ に登録されている塩基配列との同定性検査を実施した。その結果，MAFF238158（Accession No. AB646231）および MAFF238159（AB646232）の r-DNA の ITS 領域の塩基配列は，両菌株とも既報の P. citrophthora（AP266785; Cooke et al., 2000）の配列と 624 bp のうち 619 bp が一致し，99.2% の同定性が認められた。ZPM-22（AB644402）および T-1-3（AB644403）は，両菌株とも既報の P. citrophthora（AP266785; Cooke et al., 2000）の配列と 668 bp のうち 663 bp が一致し，99.3% の同定性が認められた。

以上の形態的特徴と r-DNA の ITS 領域の塩基配列から，本菌を P. citrophthora と同定した。

なお，本研究で明らかとなった DNA 塩基配列は DDBJ/EMBL/GeneBankDNA データベースに Accession No. AB646231（菌株名 MAFF238158），AB646232（菌株名 MAFF238159），AB644402（菌株名 ZPM-22）および AB644403（菌株名 T-1-3）として登録した。

### Table 1. Morphological comparison of isolates obtained from ginger with previously reported *Phytophthora citrophthora.*

<table>
<thead>
<tr>
<th>Structure</th>
<th>Present isolates</th>
<th>Phytophthora citrophthora&lt;sup&gt;a&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td>ovoid, ellipsoid, globose, distorted (variable)</td>
<td>ellipsoid, broadly ovoid, globose, limoniform, extremely distorted (variable)</td>
</tr>
<tr>
<td>Size&lt;sup&gt;b&lt;/sup&gt; (µm)</td>
<td>35–90×20–50 (56.1×32.6)</td>
<td>27±3.4 to 65.3±13.9 x 18.9±1.8 to 40.4±5.6</td>
</tr>
<tr>
<td>L/B ratio</td>
<td>1.1–3.0 (1.7)</td>
<td>1.3±0.2 to 1.8±0.1</td>
</tr>
<tr>
<td>Papilla</td>
<td>papillate one or two apices</td>
<td>prominent papillate, semipapillate, often two or more papillae</td>
</tr>
<tr>
<td>Caducity</td>
<td>noncaducous</td>
<td>noncaducous</td>
</tr>
</tbody>
</table>

<sup>a</sup> McHau and Coffey（1994）。
<sup>b</sup> Values in parentheses are the average for 100 sporangia.


本研究を進めるにあたり, 有益なご助言をいただいた元高知県病害虫防除所小林達氏, 並びに発病株をご提供いただいた徳島県立農林水産総合技術支援センター病害虫防除所吉岡茂樹氏に厚くお礼申し上げる。

引用文献


小林達氏・松岡洋明（1999）Phytophthora sp. によるショウガ疫病の発生. 日植病報 65: 679–680（要旨）.


三好 嘉典・浅水伸一（2006）カキ疫病（新病）の病原について. 日植病報 72: 72（要旨）.

中沢雅典・加藤正行（1953）暗葉病の防除について（I）植物防除 7: 87–92.


土屋隆一・矢野和幸・鈴木光生・森田孝彦・川田洋一（1999）わが国におけるショウガ寄枯病（Bacterial wilt；新病）の初発. 日植病報 65: 363.（要旨）.

植松順次・赤倉喜一郎・大久保博人・鈴木孝仁・塩田あづさ・洲崎博道（1998）. キイフルーツ疫病（新病）とキズナ（ハエラ）類疫病（病原菌未定）. 日植病報 64: 433.（要旨）.

植松順次・大久保博人・鈴木孝仁・塩田あづさ・千葉恒夫（1996）Phytophthora sp. によるトルコギキョウ疫病（新病）. 日植病報 62: 266.（要旨）.


山崎健司・矢野和幸・植松順次・竹内繁治（2009）ショウガ疫病菌の同定. 日植病報 75: 72.（要旨）.