異なる誘導換羽法がSalmonella Enteritidis(SE)の排菌および臓器内菌数に及ぼす影響
異なる誘導換羽法が *Salmonella Enteritidis* (SE) の排菌および臓器内菌数に及ぼす影響

村野多可子・青木ふき乃1・椎名幸一・並木一男・藤崎忠彦・増 義章

千葉県畜産総合研究センター，〒289-1113 千葉県八街市八街町 16-1
1) 千葉県中央家畜保健衛生所，〒282-0011 千葉県千葉市花見川区三角町 656

要 約

市販の誘導換羽用飼料の給与と絶食による 2 種類の誘導換羽法が、*Salmonella Enteritidis* (SE) の排菌や臓器内菌数に及ぼす影響を検討した。採卵鳥 4 種飼料を用い、SE 攻撃 4 日後から K 社あるいは C 社の誘導換羽飼料を絶食した群と絶食処理を施した群、そして産卵飼料を絶食した対照群の計 4 群を各飼料に設けた。誘導換羽開始後の育成便の SE 分離菌数は絶食群が有意に低く、11 日後では各飼料とも明らかに他の群より高い値を示した (P < 0.05)。換羽用飼料給与群と対照群では差がみられなかった。臓器からの SE 分離菌数は、白玉卵産出の 2 飼料では群間による差はみられなかったが、ビンク卵および赤玉卵産出では一定の傾向はみられなかった。これらの成績から、誘導換羽の際には、市販誘導換羽用飼料を用い、SE 排菌抑制を図ることが望ましいと考えられる。

キーワード：排菌，*S. Enteritidis*，誘導換羽，誘導換羽用飼料，絶食換羽

緒 言

国内で従来から実施されている誘導換羽（強制換羽）は 400～500 日齢の産卵鶏を対象に短期間絶食処理をおこない、卵胞ホルモンの分泌を止め、産卵を強制的に中止させる、換羽を誘導させる方法である。この方法により産卵後期における産卵率や卵質の改善が図られるため、国内の 63.7% の養鶏場で広く活用されている。一方、本法は換羽処理時の死亡鶏の増加、絶食のストレスによる SE 感染の増加の 2 種の問題（め、家禽、家畜に対するアミノ酸の必要性）の問題を避ける目的もある。これらの問題を解決するため、ここ数年、国内においても低カロリー・低たん白飼料を給与しながら換羽を誘導する研究が進められる。現在、絶食法から換羽法に給与する飼料が市販されている。今回、SE 攻撃後の実施した低カロリー・低たん白飼料の誘導による誘導換羽法の、その後の SE 排菌数や臓器内菌数にどのような影響を及ぼすか、従来の絶食法と比較して検討した。

1. 供試鶏

約 480 日齢の白玉卵産出鶏ジュリアおよびマリア、赤玉卵産出ポリスラウン、そしてビンク卵産出ソナリの 4 種飼料を用いた。供試鶏は各飼料 38 羽であった。

2. 誘導換羽用飼料

誘導換羽用市販飼料は K 社、C 社の 2 種類を用いた。K 社の飼料に含まれる原料物は、そごう類（ふすま、コーングルテンフィード、米ぬか）55%、穀類（とうもろこし、マイロ）34%、その他 11%、成分量は粗たん白質（CP）12% 以上、代謝エネルギー（ME）2,000 kcal/kg 以上であり、形状はマッシュであった。C 社の飼料に含まれる原料物は、そごう類（ふすま、大豆皮、米ぬか）88%、穀類（とうもろこし）2%、その他 10%、成分量は粗たん白質（CP）12% 以上、代謝エネルギー（ME）1,600 kcal/kg 以上であり、形状はクランベルであった。

3. SE 攻撃と誘導換羽用飼料の給与

リファンピンシン (rif) 酄性 SE ZK 2ax 株（全日畜生研究所より分与）を、トリプトソイブイヨン培地（栄研）（TBS）に接種し、37°C，4～5 時間振盪培養した菌液を各飼料の各供試鶏 28 羽へ 0.5 ml/羽経口接種した。攻撃菌数は 4.3 × 10^6 ～ 1.2 × 10^6 CFU/羽であった。攻撃 4 日
後に、それぞれの枝先の供試菌を7羽ずつ4群に分け、1群は調査終了までの9日間絶断（絶食群）、1群はK社の豚肉用薬剤100g/日を9日間与え（K社群）、1群はC社の豚肉用薬剤30g/日を7日間、その後40g/日を2日間与え（C社群）、残りの1群は開始前と同様の飼育料を9日間断絶給与（对照群）し、群毎に全額飲水した。
なお、SE綴縦接種11日後まで、各群とも広域飼用一般配合飼料を断続給与、自由飲水とした。

5. 統計処理
SE分離菌数については一元配置分散分析法、SE陽性数についてFisherの直接確立計算法を用いて処理した。

成績

1. ジュリア
SE攻撃4日後（誘導洗浄開始0日）の盲腸便からのSE分離菌数に、各群間に差は認められなかったが、絶食群が7日後（処理3日後）にK社群、および対照群より、11日後（処理7日後）と14日後（処理10日後）に他の3群より、明らかに高い値を示した（P<0.05）（表1）。SE分離陽性菌数は絶食群が14日に他のK社群、および対照群より明らかに高い値を示した（P<0.05）（表1）。肝臓、脾臓、腎臓、卵巣、卵管上部、および卵管子宮部からのSE分離菌数、陽性菌数に群間による差はみられなかった（表2）。

2. マリア
SE攻撃4日後（誘導洗浄開始0日）の盲腸便からのSE分離菌数に、各群間に差はみられなかったが、絶食群が7日後（処理3日後）と11日後（処理7日後）にK社群、14日後（処理10日後）に他の3群より、明らかに高い値を示した（P<0.05）（表3）。盲腸便における

<table>
<thead>
<tr>
<th>群</th>
<th>盲腸（4日後）</th>
<th>盲腸（7日後）</th>
<th>盲腸（11日後）</th>
<th>盲腸（14日後）</th>
</tr>
</thead>
<tbody>
<tr>
<td>K社</td>
<td>3.36±0.66</td>
<td>2.46±1.14</td>
<td>1.19±1.03</td>
<td>0</td>
</tr>
<tr>
<td>C社</td>
<td>3.09±0.74</td>
<td>3.07±1.37</td>
<td>1.17±1.37</td>
<td>0.86±0.83</td>
</tr>
<tr>
<td>絶食</td>
<td>2.86±1.26</td>
<td>4.41±0.94</td>
<td>3.18±1.00</td>
<td>3.33±1.09</td>
</tr>
<tr>
<td>対照</td>
<td>3.40±0.89</td>
<td>2.61±1.35</td>
<td>0.57±0.90</td>
<td>0.57±0.73</td>
</tr>
</tbody>
</table>

*14日後のサンプルのみ解剖時盲腸内物
攻撃菌数：1.2×10⁸CFU/0.5ml/羽 *異符号間に有意差あり（P<0.05）

表 2. ジュリアにおける臓器からの SE 分離菌数（上段：logCFU/g）と陽性率数（下段：陽性率数/検査数）

<table>
<thead>
<tr>
<th>群</th>
<th>肝臓</th>
<th>脾臓</th>
<th>卵巣</th>
<th>胎管上部</th>
<th>子宮部</th>
<th>卵管内膜</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 社</td>
<td>0.29±0.70</td>
<td>0.57±0.90</td>
<td>0</td>
<td>0/7</td>
<td>0/7</td>
<td>0/2</td>
</tr>
<tr>
<td>C 社</td>
<td>0.33±0.81</td>
<td>0.98±1.16</td>
<td>0</td>
<td>0</td>
<td>0/7</td>
<td>—</td>
</tr>
<tr>
<td>絶食</td>
<td>0.29±0.70</td>
<td>1.25±1.12</td>
<td>0</td>
<td>0/7</td>
<td>0/7</td>
<td>—</td>
</tr>
<tr>
<td>対照</td>
<td>0.29±0.70</td>
<td>1.37±1.26</td>
<td>0</td>
<td>0/7</td>
<td>0/7</td>
<td>0/5</td>
</tr>
</tbody>
</table>

*攻撃菌数：1.2×10⁷CFU/0.5ml/羽

表 3. マリアにおける盲腸便および盲腸内容物からの SE 分離菌数（上段：logCFU/g）と陽性数（下段：陽性数/検査数）

<table>
<thead>
<tr>
<th>群</th>
<th>盲腸（4日後）</th>
<th>盲腸（7日後）</th>
<th>盲腸（11日後）</th>
<th>盲腸（14日後）</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 社</td>
<td>3.59±0.42</td>
<td>3.05±0.92</td>
<td>1.40±1.28</td>
<td>0.86±0.64</td>
</tr>
<tr>
<td>C 社</td>
<td>4.23±0.85</td>
<td>3.50±0.75</td>
<td>2.82±0.52</td>
<td>0.61±0.82</td>
</tr>
<tr>
<td>絶食</td>
<td>3.54±0.59</td>
<td>4.33±1.12</td>
<td>3.50±0.82</td>
<td>3.98±0.86</td>
</tr>
<tr>
<td>対照</td>
<td>4.38±1.35</td>
<td>3.42±0.7</td>
<td>2.41±1.37</td>
<td>0.74±1.22</td>
</tr>
</tbody>
</table>

*14日後のサブルのみ解剖時の盲腸内容物
攻撃菌数：4.3×10⁷CFU/0.5ml/羽　*異符号間に有意差あり（P<0.05）

表 4. マリアにおける臓器からの SE 分離菌数（上段：logCFU/g）と陽性数（下段：陽性数/検査数）

<table>
<thead>
<tr>
<th>群</th>
<th>肝臓</th>
<th>脾臓</th>
<th>卵巣</th>
<th>胎管上部</th>
<th>子宮部</th>
<th>卵管内膜</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 社</td>
<td>0.29±0.70</td>
<td>0.86±0.99</td>
<td>1.19±1.03</td>
<td>1.14±0.83</td>
<td>0.71±0.8</td>
<td>—</td>
</tr>
<tr>
<td>C 社</td>
<td>0.29±0.70</td>
<td>1.47±0.94</td>
<td>0.29±0.70</td>
<td>0.43±0.73</td>
<td>0.29±0.45</td>
<td>—</td>
</tr>
<tr>
<td>絶食</td>
<td>0.57±0.90</td>
<td>0.86±0.99</td>
<td>0.71±0.70</td>
<td>1.00±0.76</td>
<td>0.78±1.30</td>
<td>0</td>
</tr>
<tr>
<td>対照</td>
<td>0.29±0.70</td>
<td>0.64±1.02</td>
<td>0.86±0.83</td>
<td>0.99±1.06</td>
<td>0.57±0.73</td>
<td>0</td>
</tr>
</tbody>
</table>

*攻撃菌数：4.3×10⁷CFU/0.5ml/羽

3. ソニア

SE 分離陽性数は絶食群が14日後にC社群、対照群より明らかに高い値を示した（P<0.05）（表3）。肝臓、脾臓、卵巣、胎管上部、胎管子宮部からの SE 分離菌数、陽性率数に時間による差はみられなかった（表4）。

[1225]
表 5. ソニアにおける脳膜および脳膜内容物からの SE 分離菌数（上段：logCFU/g）と陽性率（下段：陽性菌数/検査数）

<table>
<thead>
<tr>
<th>群</th>
<th>脳膜（4日後）</th>
<th>脳膜（7日後）</th>
<th>脳膜（11日後）</th>
<th>脳膜（14日後）</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 社</td>
<td>2.78±0.142</td>
<td>3.46±0.838**</td>
<td>2.04±1.066</td>
<td>0</td>
</tr>
<tr>
<td>C 社</td>
<td>2.27±0.65</td>
<td>2.36±1.496</td>
<td>1.21±1.54</td>
<td>0.29±0.701**</td>
</tr>
<tr>
<td>絶食</td>
<td>2.49±0.17</td>
<td>4.33±0.768**</td>
<td>4.32±0.59</td>
<td>3.06±1.770**</td>
</tr>
<tr>
<td>対照</td>
<td>2.67±0.13</td>
<td>2.85±1.04</td>
<td>1.30±1.15</td>
<td>0.86±1.41</td>
</tr>
</tbody>
</table>

*14日後のサンプルのみ絶食時の脳膜内容物
** 攻撃菌数：1.2×10^6 CFU/0.5ml/羽 *** 異符号間に有意差あり（P<0.05）

表 6. ソニアにおける腸菌からの SE 分離菌数（上段：logCFU/g）と陽性率（下段：陽性菌数/検査数）

<table>
<thead>
<tr>
<th>群</th>
<th>腸菌</th>
<th>腸下</th>
<th>卵巢</th>
<th>卵管上部</th>
<th>子宮部</th>
<th>卵管内膜</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 社</td>
<td>0.71±0.088**</td>
<td>0.29±0.701</td>
<td>0.73±1.18</td>
<td>0.76±0.93</td>
<td>0.29±0.701**</td>
<td>0</td>
</tr>
<tr>
<td>C 社</td>
<td>0.57±0.91</td>
<td>1.14±0.838**</td>
<td>1.13±1.78</td>
<td>1.12±1.31</td>
<td>0.86±0.99</td>
<td>0/3</td>
</tr>
<tr>
<td>絶食</td>
<td>0.71±0.09</td>
<td>0.57±0.90</td>
<td>0.57±0.90</td>
<td>1.35±2.60</td>
<td>0.43±0.733*</td>
<td>0</td>
</tr>
<tr>
<td>対照</td>
<td>1.71±0.70</td>
<td>1.83±0.77</td>
<td>0.57±0.90</td>
<td>0.29±0.70</td>
<td>0</td>
<td>0/6</td>
</tr>
</tbody>
</table>

* 攻撃菌数：1.2×10^6 CFU/0.5ml/羽 ** 異符号間に有意差あり（P<0.05）

後（処理7日後）と14日後（処理10日後）に他の3群より、明らかに高い値を示した（P<0.05）（表5）。脳膜便におけるSE分離菌数は絶食群が14日後に他の3群より明らかに高い値を示した（P<0.05）（表5）。腸菌からのSE分離菌数は、肝臓ではC社群が对照群より、脳膜ではK社群、絶食群が対照群より、卵管子宮部では対照群がC社群より明らかに低い値を示した（P<0.05）。卵管、卵管上部では群間による差はみられなかった（表5）。卵巣、卵管上部、卵管子宮部からのSE分離菌数に群間による差はみられなかった（表5）。

4. ポリスプラウン

SE攻撃4日後（誘導換羽開始前1日）の脳膜便からのSE分離菌数に、各群間に差はみられなかったが、絶食群が7日後（処理3日後）、11日後（処理7日後）、14日後（処理10日後）に他の3群より明らかに高い値を示した（P<0.05）（表5）。脳膜便におけるSE分離菌数は14日後で絶食群が他の3群より明らかに高い値を示した（P<0.05）（表5）。腸菌からのSE分離菌数は、肝臓では絶食群がC社群より、卵巣および卵管子宮部では対照群が絶食群より明らかに低い値を示した（P<0.05）。腸菌、卵管上部では群間による差はみられなかった（表5）。卵巣、卵管上部、卵管子宮部からのSE分離菌数に群間による差はみられなかった（表5）。

考 察

絶食による誘導換羽がSEの排菌を助長させる**7.8**ことは明らかであり、食品衛生上、大きな問題となる。また、アニマルウェルフェアの観点からも、近い将来禁止になる可能性があり、市販誘導換羽用飼料給与による誘導換羽が徐々に用いられるようになってきているが、飼料法に比べて飼料費や排泄量は増加し、チェーン式自動飼料装置などによる飼料給与方法の問題点から大幅な普及には至っていない。しかし、絶食による誘導換羽には熟練した技術を要し、一歩間違えば多数の死亡発

— 226 —
表 7. ポリスブラウンにおける盲腸管および盲腸内容物からの SE 分離菌
数（上段：logCFU/g）と陽性率（下段：陽性率/検査数）

<table>
<thead>
<tr>
<th>群</th>
<th>盲腸（4日後）</th>
<th>盲腸（7日後）</th>
<th>盲腸（11日後）</th>
<th>盲腸（14日後）</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 社</td>
<td>3.16±1.56</td>
<td>5.20±1.56</td>
<td>1.72±1.56</td>
<td>0.29±0.70</td>
</tr>
<tr>
<td>C 社</td>
<td>3.45±0.68</td>
<td>3.14±1.89</td>
<td>1.58±1.49</td>
<td>1.04±1.26</td>
</tr>
<tr>
<td>親食</td>
<td>3.67±0.92</td>
<td>4.29±0.65</td>
<td>3.82±1.60</td>
<td>3.57±1.38</td>
</tr>
<tr>
<td>対照</td>
<td>3.31±0.89</td>
<td>3.31±0.89</td>
<td>0.97±1.14</td>
<td>0.29±0.70</td>
</tr>
</tbody>
</table>

*14日後のサンプルのみ解剖時の盲腸内容物
攻撃菌数：7.9×10^3 CFU/0.5 m/羽 *異符号間に有意差あり（P<0.05）

表 8. ポリスブラウンにおける腸器からの SE 分離菌数（上段：logCFU/g）と陽性率（下段：陽性率/検査数）

<table>
<thead>
<tr>
<th>群</th>
<th>腸菌</th>
<th>腸菌</th>
<th>卵巢</th>
<th>卵管上部</th>
<th>子宮部</th>
<th>卵管内卵</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 社</td>
<td>1.4±0.90</td>
<td>1.76±0.72</td>
<td>1.47±1.64</td>
<td>0.86±0.99</td>
<td>0.82±1.12</td>
<td>0.29±0.70</td>
</tr>
<tr>
<td>C 社</td>
<td>1.90±0.89</td>
<td>2.04±1.11</td>
<td>0.72±1.17</td>
<td>0.83±1.08</td>
<td>0.57±0.90</td>
<td>0.29±0.70</td>
</tr>
<tr>
<td>親食</td>
<td>0.86±0.90</td>
<td>1.43±0.90</td>
<td>1.92±1.99</td>
<td>1.54±1.61</td>
<td>1.42±1.39</td>
<td>0.29±0.70</td>
</tr>
<tr>
<td>対照</td>
<td>1.43±0.90</td>
<td>2.04±0.11</td>
<td>0.29±0.70</td>
<td>0.29±0.70</td>
<td>0.29±0.70</td>
<td>0.29±0.70</td>
</tr>
</tbody>
</table>

*攻撃菌数：7.9×10^3 CFU/0.5 m/羽 **異符号間に有意差あり（P<0.05）

生につながる。
今後、市販誘導換羽用飼料を給与し、盲腸管および腸器からの SE 分離菌数を調査した結果、盲腸管においては、絶食処理による換羽方法と比べ、明らかに菌数は減少した。菌種は、以前、我々が C 社の製品を用いて、ジュリアに給与した結果b)と同様の傾向を示した。また、腸器からの分離菌数は白玉卵産出鶏のジュリアおよびマリアでは換羽処理による差がみられず、以前の結果b)と同様であった。しかし、ピンク卵産出鶏のソニアおよび白玉卵産出鶏のポリスブラウンでは一定の傾向はみられなかった。

本実験では SE 感染群に誘導換羽を実施した場合を想定し、先に SE を経口感染させた後、誘導換羽を実施した。

Holt ら12) と牧野ら13) は、我々と対比にイソギンチャノウを実施した鶏群に SE を感染させており、いずれの場合も絶食群における SE 排菌数は誘導換羽飼料給与群、対照群より明らかに高い値を示した。これらの報告と本研究の結果から、SE 感染群あるいは感染後片かかわらず、市販誘導換羽用飼料給与による誘導換羽は、絶食による誘導換羽に比べ SE の排菌を明らかに抑制させるため、誘導換羽の実施に際して有効な方法と考える。

文 献
1) 青木 ふさなら：Salmonella Enteritidis 不活化ワクチン接種における強制換羽処理の影響。卵養病研究 38：31-37 (2003)
2) 市販技術協会：採卵鶏飼育実習アンケート調査報告書より、鶏の研究 83, 48-50 (2008)
3) 市販技術協会：鶏卵換羽，pI 市販技術協会編、アミュールウェルファーの考え方に対する採卵鶏の飼育管理指針、市販技術協会、東京 (2011)
5) Holt, P.S. and Porter, R.E.: Microbial and histopatho-
Effect of Different Molt-Inducing Methods on the Colonization and Growth of *Salmonella* Enteritidis in the Caeca and Internal Organs of Chickens

Takako Murano, Fukino Aoki, Koichi Shiina, Kazuo Namiki, Tadahiko Fujisaki, and Yoshiaki Tada

Chiba Prefectural Livestock Research Center, He 16-1 Yachimata, Yachimata, Chiba 289-1113
1) Chuo Livestock Hygiene Service Center, 656 Sankakucyo, Hanamigawa, Chiba 262-0011

Summary

This study assessed the effects of two methods for induced molting, feeding commercial molt-inducing diets and fasting, on the excretion of *Salmonella* Enteritidis (SE). Four brands of laying hens were divided into four groups and treated from four days after SE challenge as follows: feeding two types of commercial molt-inducing diets (company K or C), fasting, and feeding commercial layer feed as a control.

The amount of SE recovered from the cecal contents after induced molting tended to be greatest in the fasting group, and was clearly greater in all brands at 11 days (*P* < 0.05), but no differences were observed between the commercial molt-inducing diet groups and the control group. There were no differences among the groups in the amount of SE recovered from the tissue samples in the two brands of white egg-laying hens, while no specific tendency was observed in the pink or red egg-laying hens.

From these results, it is recommended to use commercial molt-inducing diets to lower SE excretion during induced molting.

Key words: fecal excretion, feed-removal molting, induced molting, induced-molting diet, *S. Enteritidis*