クワうどんこ病の防除 (1)越冬源としての子のう殻の撲滅

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>誌名</td>
<td>蠶絲研究</td>
</tr>
<tr>
<td>ISSN</td>
<td>00364495</td>
</tr>
<tr>
<td>巻/号</td>
<td>45</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 40-47</td>
</tr>
<tr>
<td>発行年月</td>
<td>1963年1月</td>
</tr>
</tbody>
</table>

農林水産省 農林水産技術会議事務局筑波産学連携支援センター
Tsukuba Business-Academia Cooperation Support Center, Agriculture, Forestry and Fisheries Research Council Secretariat
正 誤 表

<table>
<thead>
<tr>
<th>頁</th>
<th>行</th>
<th>誤</th>
<th>正</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12 行目</td>
<td>収穫一</td>
<td>収穫一</td>
</tr>
<tr>
<td>6</td>
<td>本文 5 行目</td>
<td>おいてNは</td>
<td>おいてはNは</td>
</tr>
<tr>
<td>13</td>
<td>第 1 表 適熟明欄</td>
<td>熟熟</td>
<td>熟熟</td>
</tr>
<tr>
<td>25</td>
<td>第 2 表 負担金</td>
<td>よりくやや多く</td>
<td>よりくやや多く</td>
</tr>
<tr>
<td>26</td>
<td>第 3 表蜜模バイブ</td>
<td>900</td>
<td>500</td>
</tr>
<tr>
<td>31</td>
<td>本文 2 行目</td>
<td>消却</td>
<td>消却</td>
</tr>
<tr>
<td>34</td>
<td>下から 8 行目</td>
<td>365 mm</td>
<td>365 cm</td>
</tr>
<tr>
<td>39</td>
<td>Résumé 著者名</td>
<td>180 コ</td>
<td>180 コ</td>
</tr>
<tr>
<td>47</td>
<td>上から 5 行目</td>
<td>mercapto</td>
<td>mercapto</td>
</tr>
<tr>
<td>48</td>
<td>上から 12 行目</td>
<td>依試桑園</td>
<td>依試桑園</td>
</tr>
<tr>
<td>51</td>
<td>下から 9 行目</td>
<td>そのうちに化蛹</td>
<td>そのうちに化蛹</td>
</tr>
<tr>
<td>54</td>
<td>最下行</td>
<td>katsuaki</td>
<td>Katsuaki</td>
</tr>
<tr>
<td>55</td>
<td>九州支場</td>
<td>practical</td>
<td>越冬源</td>
</tr>
<tr>
<td>56</td>
<td>处理 II Mらん</td>
<td>Botrytios</td>
<td>**調査子のう数</td>
</tr>
<tr>
<td>57</td>
<td>対照 I Mらん</td>
<td>15</td>
<td>Botrytis</td>
</tr>
<tr>
<td>60</td>
<td>下から 8 行目</td>
<td>2%ぶどう糖</td>
<td>2 ～ 4 時間に冷蔵</td>
</tr>
<tr>
<td>64</td>
<td>第 2 表題目</td>
<td>2 ～ 4 時間に冷蔵</td>
<td>用桑：改鼠</td>
</tr>
<tr>
<td>65</td>
<td>上から 8 行目</td>
<td>空らん</td>
<td>空らん</td>
</tr>
<tr>
<td>69</td>
<td>本文 10 行目</td>
<td>1</td>
<td>（1）1</td>
</tr>
</tbody>
</table>

説明

1. 実験方法
 ･･･酵化度
 ･･･酵化度（％）
2. 三の
 アセット糸
 アセット糸
クワ裏うどんこ病の防除

（1）越冬源としての子のう殻の撲滅

糸井節美・久保村安衛・中島賢三

クワ裏うどんこ病の防除は、（1）越冬源の子のう胞子を撲滅して、第1次発病を防止すること、（2）第2次発病の中延を防止することの二つに帰せられている。そこで、まず枝条に付着越冬中の子のう殻を薬剤散布により撲滅しようとここにみた。殺菌剤はその効果の現われ方によって、保護殺菌剤と直接殺菌剤（または撲滅剤ともいう）の二つに大別されている。本試験は子のう殻撲滅を目的とするものであるから、供試薬剤としては撲滅の効果の顕著なものを選定する必要がある。そのため、直接殺菌剤の代表といわれるPCP剤（クロノ）、有機水銀剤（PMF、シンメル）、また一般のうどんこ病の特効薬とみられている石灰イオウ合剤のほかに、石灰ボルドウおよび水銀ボルドウの計6種類を供試し子のう殻撲滅効果を調査した。

実験材料および方法

供試試験は長野県明科町の子のう殻付着数の比較的多い改良鼠返桑園で実施せられた。

薬剤散布期日は1962年2月2日および4月19日であった。各試験区の株に散布した。両日とも好時であり、散布後数日間は晴天ないし雲天が続き、1試験区あたり10株とし、背負式全自動噴霧機によって、薬液が均等に付着するよう十分に散布した。

2月2日散布の場合は3月16日および4月19日に、1株から1枝条、1区について計10枝条をとり、その付着子のう殻をベトリ皿の水面上にぎった。これを電気光線下、15℃に4〜5日保ってから、20％KOH溶液中でおしつぶして子のう殻の内容を調べた。

なお、これらの薬剤の効果はさらに室内試験によって調べられた。供試した子のう殻は1961年秋に中部支場病虫対市平桑園から採集し、室内に保存し、薬剤処理は1962年2月9〜12日に実施せられた。すなわち、子のう殻を直径約5cmの紙上にまき、乾燥しないように四つ折りとし、端をクリップで切った。15℃に調節した小形ビーカー中の各種薬液にこれを浸せきし、真空中で20mmHgまで吸引して気泡をとり去り、子のう殻を薬液に十分接触させた。約1分間の吸引後に常圧にとどめ、それぞれ2, 4, 15, 60および240分間放置した後、とり出して十分水洗し、新しい紙上に移して乾燥した。そのまま室内に放置し、5月23日〜6月10日に、紙から子のう殻をかきとり、前述の
方法により子のうの裂開および子のう胞子の発芽について調査した。
なお本試験に供試した薬剤の主成分を表記すればつぎのとおりである。

供試薬剤の主成分

<table>
<thead>
<tr>
<th>薬剤名</th>
<th>主成分</th>
<th>成分</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMF（メル）</td>
<td>ジナフチルメタンジスルホン酸フェニル水銀10％</td>
<td>酸フェニル水銀5.6％</td>
</tr>
<tr>
<td>シンメル</td>
<td>塩化フェニル水銀1.6％</td>
<td>ジナフチルメタンジスルホン酸フェニル水銀0.8％</td>
</tr>
<tr>
<td>P C P</td>
<td>ペンタクロロフェノールナトリウム塩90％</td>
<td></td>
</tr>
<tr>
<td>水銀ポルドウ</td>
<td>塩基性硫酸銅45％</td>
<td>エチル亜硫酸水銀0.33％</td>
</tr>
<tr>
<td>石灰イオウ合剤</td>
<td>多硫化カルシウム27.5％</td>
<td></td>
</tr>
</tbody>
</table>

第1表A 薬剤の枝条面着子のう殺撲滅効果（2月2日散布、3月16日調査）

<table>
<thead>
<tr>
<th>薬剤名</th>
<th>薬剤濃度</th>
<th>調子の数</th>
<th>子のうの発育の段階</th>
<th>子のうの発育の段階</th>
<th>子のうの発育の段階</th>
<th>子のうの発育の段階</th>
<th>子のうの発育の段階</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMF</td>
<td>1000倍</td>
<td>6237</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>2000倍</td>
<td>6271</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>シンメル</td>
<td>1000倍</td>
<td>6109</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>2000倍</td>
<td>5783</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>P C P</td>
<td>100倍</td>
<td>6219</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>200倍</td>
<td>6438</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>水銀ポルドウ</td>
<td>100倍</td>
<td>6391</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>200倍</td>
<td>6079</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>石灰ポルドウ</td>
<td>12-12式</td>
<td>6771</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>6-6号</td>
<td>6056</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>石灰イオウ合剤</td>
<td>25号</td>
<td>6661</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>50号</td>
<td>6598</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>無散布</td>
<td>6230</td>
<td>10.3</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>6232</td>
<td>13.7</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
</tbody>
</table>

注 1962年2月2日、1区あたり10株に対し薬剤散布を実施し、3月16日1区について1株あたり1枝条として10枝条をとり、子のう殻をベトリ皿の水面上に鳴き、電磁水温15℃に5日間保ってから、20％KOH溶液でおしふぶし、子のう殻400個について調査した。

* 子のうの発育の段階2) I：健全な子のう胞子を包蔵する子のう。II：Iに準じた子のう胞子を包蔵する子のう。III：崩壊した子の胞子を包蔵する子のう。IV：周囲が全く崩壊した子のう。

発芽子の数に対する発芽数を示す％。
実験結果

(4) 本場試験 2月2日、PMF (1,000, 2,000倍)，シメンール (1,000, 2,000倍)、PCP (100, 200倍)、水銀ボルドウ (100, 200倍)，石灰ボルドウ (12-12, 6-6式) および石灰イオウ合剤 (25, 50倍) の6種類について薬剤散布が実施せられた。しかし、3月16日および5月1日の子のう撲滅効果の調査成績は第1表AおよびBのとりである。
両表によれば、PCPにおいて顕著な撲滅効果が認められ，特に100倍の濃度では3月16日に，すでに生活力がありとみられる子のう（表類段階のIおよびII）は全無であった。5月1日の調査では完全に子のう殻は崩壊し，死滅している。他の薬剤はいずれも無散布区に比較すれば，やや健全子のう殻の割合が減少している程度にすぎない，またその効果の違いは大同小異である。

第1表B 薬剤の枝条面付着子のう撲滅効果（2月2日散布，5月1日調査）

<table>
<thead>
<tr>
<th>薬剤</th>
<th>濃度</th>
<th>調査子の無殻数 (%)</th>
<th>墓殻子の無殻数 (%) *</th>
<th>健全子の無殻数 (％)**</th>
<th>子のう胞子数</th>
<th>未裂開裂開計</th>
<th>逸出数</th>
<th>発芽率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMF</td>
<td>1000</td>
<td>571</td>
<td>94.9</td>
<td>2.5</td>
<td>2.6</td>
<td>5.1</td>
<td>140</td>
<td>32.9</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>916</td>
<td>88.9</td>
<td>5.8</td>
<td>5.3</td>
<td>11.1</td>
<td>593</td>
<td>59.2</td>
</tr>
<tr>
<td>シメンール</td>
<td>1000</td>
<td>610</td>
<td>95.7</td>
<td>2.5</td>
<td>1.8</td>
<td>4.3</td>
<td>115</td>
<td>57.4</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>771</td>
<td>91.4</td>
<td>6.7</td>
<td>1.9</td>
<td>8.6</td>
<td>107</td>
<td>53.3</td>
</tr>
<tr>
<td>PCP</td>
<td>100</td>
<td>1000</td>
<td>100.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1000</td>
<td>99.7</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>水銀ボルドウ</td>
<td>100</td>
<td>741</td>
<td>99.8</td>
<td>0.8</td>
<td>1.2</td>
<td>2.0</td>
<td>100</td>
<td>38.0</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1000</td>
<td>97.5</td>
<td>0.8</td>
<td>1.7</td>
<td>2.5</td>
<td>143</td>
<td>59.4</td>
</tr>
<tr>
<td>石灰ボルドウ</td>
<td>12-12式</td>
<td>765</td>
<td>97.6</td>
<td>1.3</td>
<td>1.1</td>
<td>2.4</td>
<td>59</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td>6-6式</td>
<td>756</td>
<td>90.2</td>
<td>3.3</td>
<td>6.5</td>
<td>9.8</td>
<td>385</td>
<td>63.1</td>
</tr>
<tr>
<td>石灰イオウ合剤</td>
<td>25</td>
<td>631</td>
<td>96.1</td>
<td>2.5</td>
<td>1.4</td>
<td>3.9</td>
<td>93</td>
<td>16.1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>606</td>
<td>83.7</td>
<td>9.0</td>
<td>7.3</td>
<td>16.3</td>
<td>322</td>
<td>45.3</td>
</tr>
<tr>
<td>無散布</td>
<td></td>
<td>1000</td>
<td>80.6</td>
<td>11.4</td>
<td>8.0</td>
<td>19.4</td>
<td>827</td>
<td>66.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>84.2</td>
<td>5.6</td>
<td>10.2</td>
<td>15.8</td>
<td>848</td>
<td>55.5</td>
</tr>
</tbody>
</table>

注 1962年5月1日調査，その他は第1表Aと同様である。
* 墳殻子の無殻とは表類段階III以上の子のう殻を包盪する子のう殻である。
** 健全子の無殻とは表類段階I～IIの子のう殻を包盪する子のう殻である。

つきに，休眠からさめた子のう殻の割合がさらに多かったと思われる4月19日に，薬剤散布が実施せられた。すでに前回において，PCPの有効性が認められたので，ここではPCPは100, 200, 400および800倍の4段階とし，シメンールは除外した。しかし5月11日に前回と同様にして行なった薬剤調査の結果は第2表のとおりである。

第2表によれば，PCPはやはり顕著な効果を示し，200倍液で子のう殻は完全に撲滅される。そのつぎに有効なもののは石灰イオウ合剤であって，25, 50倍区ともに子のう殻の裂開はみられない。一般にイオウ系殺虫剤は気温の高い時期に効果が大きいといわれてい
第2表 薬剤の枝条面着子の仮植え滅発効果（4月19日散布、5月11日調査）

<table>
<thead>
<tr>
<th>薬剤</th>
<th>濃度</th>
<th>調査子の崩壊子の仮植え数（数）</th>
<th>健全子の仮植え（％）</th>
<th>子の仮植え数（％）</th>
<th>未裂開</th>
<th>裂開</th>
<th>合計</th>
<th>退出数</th>
<th>発芽率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMF</td>
<td>1000</td>
<td>860 96.7 2.3 0.2 4.3 85 64.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>900 92.8 2.2 0.3 7.2 219 67.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>918 99.8 0.2 0.2 0.2 — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>620 99.7 0.3 0.3 0.3 — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>992 99.2 0.5 0.3 0.8 12 — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>1168 96.5 0.9 2.6 3.5 133 18.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水銀 ボルドウ</td>
<td>12-12式</td>
<td>579 99.7 0.6 1.7 1.7 63 71.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-6式</td>
<td>833 97.3 0.6 2.1 2.7 120 68.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>石灰イオウ合剤</td>
<td>25</td>
<td>593 99.2 0.8 0.8 0.8 — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>612 97.4 2.6 0.6 0.6 — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>無散布</td>
<td></td>
<td>1544 90.8 0.1 9.1 9.2 870 78.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注 1962年4月19日薬剤散布、5月11日調査、その他は前回と同様である。

また、4月19日散布が2月2日散布より挙げ効果が高いのは、気温の影響によるものと思われる。その他の薬剤では前同様挙げ効果は期待できない。なお、上記は場試験に供試した薬剤のすべてにおいて、その供試設置ではクサに対しての薬害はみられなかった。ちなみに4月19日のクサ芽は冬芽～生芽の状態であった。

第3表 PMF浸せき時間と子の仮植え滅発効果

<table>
<thead>
<tr>
<th>浸せき時間（分）</th>
<th>濃度（倍）</th>
<th>調査子の崩壊子の仮植え数（数）</th>
<th>健全子の仮植え（％）</th>
<th>子の仮植え数（％）</th>
<th>未裂開</th>
<th>裂開</th>
<th>合計</th>
<th>退出数</th>
<th>発芽率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1000</td>
<td>609 22.0 57.0 21.0 78.0 1203 32.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>526 27.0 45.4 27.6 73.0 1383 47.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
<td>560 37.5 39.5 23.0 62.5 1099 31.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>533 36.0 42.9 21.1 64.0 944 44.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1000</td>
<td>510 37.6 43.0 19.4 62.4 889 70.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>557 20.8 55.3 23.9 79.2 1207 41.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1000</td>
<td>541 62.1 36.6 1.3 37.9 40 45.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>544 23.7 59.6 16.7 76.3 539 24.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>1000</td>
<td>554 95.0 5.0 0 5.0 — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>593 71.7 27.1 1.2 28.3 34 29.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注 子の仮植えを土紙上にまで包み、15℃の蒸液中に浸せきして20 mmHgに吸引し、約1分後に常圧に戻すと、そのまま所定時間浸せきし、水洗後風乾した。子の仮植えの調査方法は前表と同様である。
薬剤による撲滅効果を調べた結果は第3～8表に示すとおりである。なお、薬剤のかわりに水を用いて同様に処理した試験の結果は第9表のとおりである。

第4表 シンメル浸せき時間と子のう殻撲滅効果

<table>
<thead>
<tr>
<th>浸せき時間（分）</th>
<th>濃度（倍）</th>
<th>調査子のう殻数</th>
<th>崩壊子のう殻数</th>
<th>健全子のう殻数（％）</th>
<th>未裂開</th>
<th>裂開</th>
<th>合計</th>
<th>逸出数</th>
<th>発芽率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>1000</td>
<td>527</td>
<td>27.1</td>
<td>45.5</td>
<td>24.2</td>
<td>72.9</td>
<td>696</td>
<td>36.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000</td>
<td>544</td>
<td>23.2</td>
<td>50.2</td>
<td>26.6</td>
<td>76.8</td>
<td>1305</td>
<td>31.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1000</td>
<td>528</td>
<td>24.2</td>
<td>51.7</td>
<td>24.1</td>
<td>75.8</td>
<td>1014</td>
<td>43.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000</td>
<td>518</td>
<td>24.1</td>
<td>51.3</td>
<td>24.6</td>
<td>57.9</td>
<td>1066</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1000</td>
<td>539</td>
<td>26.7</td>
<td>53.2</td>
<td>20.1</td>
<td>73.3</td>
<td>573</td>
<td>49.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000</td>
<td>529</td>
<td>31.7</td>
<td>49.7</td>
<td>18.6</td>
<td>68.3</td>
<td>711</td>
<td>49.5</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1000</td>
<td>573</td>
<td>40.5</td>
<td>55.3</td>
<td>4.2</td>
<td>59.5</td>
<td>123</td>
<td>56.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000</td>
<td>572</td>
<td>32.6</td>
<td>54.4</td>
<td>13.0</td>
<td>67.4</td>
<td>486</td>
<td>24.9</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>1000</td>
<td>541</td>
<td>82.8</td>
<td>46.3</td>
<td>9.0</td>
<td>55.3</td>
<td>110</td>
<td>28.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000</td>
<td>551</td>
<td>44.7</td>
<td>46.3</td>
<td>9.0</td>
<td>55.3</td>
<td>110</td>
<td>28.4</td>
</tr>
</tbody>
</table>

第5表 P C P浸せき時間と子のう殻撲滅効果

<table>
<thead>
<tr>
<th>浸せき時間（分）</th>
<th>濃度（倍）</th>
<th>調査子のう殻数</th>
<th>崩壊子のう殻数</th>
<th>健全子のう殻数（％）</th>
<th>未裂開</th>
<th>裂開</th>
<th>合計</th>
<th>逸出数</th>
<th>発芽率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>100</td>
<td>1016</td>
<td>34.4</td>
<td>56.4</td>
<td>9.2</td>
<td>65.6</td>
<td>574</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>992</td>
<td>32.1</td>
<td>57.3</td>
<td>10.6</td>
<td>67.9</td>
<td>804</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>100</td>
<td>816</td>
<td>63.9</td>
<td>34.6</td>
<td>1.5</td>
<td>36.1</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>831</td>
<td>59.5</td>
<td>37.5</td>
<td>3.0</td>
<td>40.5</td>
<td>87</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>100</td>
<td>679</td>
<td>56.3</td>
<td>43.7</td>
<td>0</td>
<td>43.7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>1038</td>
<td>52.3</td>
<td>47.7</td>
<td>0</td>
<td>47.7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>100</td>
<td>752</td>
<td>82.0</td>
<td>18.0</td>
<td>0</td>
<td>18.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>929</td>
<td>68.7</td>
<td>31.3</td>
<td>0</td>
<td>31.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>100</td>
<td>611</td>
<td>96.3</td>
<td>3.7</td>
<td>0</td>
<td>3.7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>845</td>
<td>89.9</td>
<td>10.1</td>
<td>0</td>
<td>10.1</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

第9表からわかるように、子のう殻を15℃の水中で20 mmHgの陰圧条件下に1分間放置して気泡を除去し、さらに4時間浸せきする処理は決して子のう殻を損傷するものではない。したがって、本試験結果にみられる子のう殻の崩壊、子のう殻裂開率の減少などはすべて供試薬剤の効果によるものである。ここでも供試薬剤中、PCPの薬効が最も顕著であって、100倍液4分間浸せきにより、子のう殻の裂開率は著しく減少し、子のう殻
第6表 水銀ボルドウ浸せき時間と子のう殻破壊効果

<table>
<thead>
<tr>
<th>浸せき時間（分）</th>
<th>濃度（倍）</th>
<th>調査子のう殻数</th>
<th>崩壊子のう殻数</th>
<th>健全子のう殻数（%）</th>
<th>子のう胞子</th>
<th>未裂開</th>
<th>裂開</th>
<th>合計</th>
<th>逸出数</th>
<th>発芽率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>100</td>
<td>546</td>
<td>31.4</td>
<td>58.2</td>
<td>10.4</td>
<td>68.6</td>
<td>591</td>
<td>28.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>530</td>
<td>30.6</td>
<td>51.5</td>
<td>17.9</td>
<td>69.4</td>
<td>932</td>
<td>51.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>566</td>
<td>38.2</td>
<td>48.4</td>
<td>13.4</td>
<td>61.8</td>
<td>745</td>
<td>42.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>526</td>
<td>30.4</td>
<td>57.5</td>
<td>12.1</td>
<td>69.6</td>
<td>503</td>
<td>36.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>562</td>
<td>27.8</td>
<td>61.2</td>
<td>11.0</td>
<td>72.2</td>
<td>410</td>
<td>49.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>565</td>
<td>36.8</td>
<td>50.4</td>
<td>12.8</td>
<td>63.2</td>
<td>661</td>
<td>31.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>100</td>
<td>528</td>
<td>35.6</td>
<td>49.0</td>
<td>15.4</td>
<td>64.4</td>
<td>709</td>
<td>57.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>543</td>
<td>32.2</td>
<td>53.5</td>
<td>14.3</td>
<td>67.8</td>
<td>538</td>
<td>58.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>100</td>
<td>506</td>
<td>40.7</td>
<td>55.5</td>
<td>3.8</td>
<td>59.3</td>
<td>199</td>
<td>12.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>550</td>
<td>34.9</td>
<td>51.1</td>
<td>14.0</td>
<td>65.1</td>
<td>847</td>
<td>32.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第7表 石灰ボルドウ浸せき時間と子のう殻破壊効果

<table>
<thead>
<tr>
<th>浸せき時間（分）</th>
<th>濃度（倍）</th>
<th>調査子のう殻数</th>
<th>崩壊子のう殻数</th>
<th>健全子のう殻数（%）</th>
<th>子のう胞子</th>
<th>未裂開</th>
<th>裂開</th>
<th>合計</th>
<th>逸出数</th>
<th>発芽率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12-12</td>
<td>532</td>
<td>31.6</td>
<td>66.7</td>
<td>1.7</td>
<td>68.4</td>
<td>93</td>
<td>53.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-6</td>
<td>544</td>
<td>29.4</td>
<td>67.8</td>
<td>2.8</td>
<td>70.6</td>
<td>166</td>
<td>53.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12-12</td>
<td>542</td>
<td>86.9</td>
<td>13.1</td>
<td>0</td>
<td>13.1</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-6</td>
<td>487</td>
<td>62.7</td>
<td>36.7</td>
<td>0.6</td>
<td>37.3</td>
<td>25</td>
<td>52.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12-12</td>
<td>651</td>
<td>95.7</td>
<td>4.1</td>
<td>0.2</td>
<td>4.3</td>
<td>7</td>
<td>12.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-6</td>
<td>594</td>
<td>91.9</td>
<td>7.3</td>
<td>0.8</td>
<td>8.1</td>
<td>49</td>
<td>53.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>12-12</td>
<td>562</td>
<td>93.2</td>
<td>6.8</td>
<td>0</td>
<td>6.8</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-6</td>
<td>477</td>
<td>92.2</td>
<td>7.8</td>
<td>0</td>
<td>7.8</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>12-12</td>
<td>517</td>
<td>100.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-6</td>
<td>527</td>
<td>99.1</td>
<td>0.9</td>
<td>0</td>
<td>0.9</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

子発芽はみられなくなる。そのつぎに有効なのは石灰イオウ合剤であって、25倍液15分間浸せきによりかなりの効果を示し、同液1時間浸せきにより子のう殻は完全に撲滅されている。有機水銀剤のPMF、シメル、および銅水銀剤の水銀ボルドウでは、は場試験同様撲滅効果は弱く、4時間浸せきでも、なお完全とはいいがたい。他方石灰ボルドウは12-12式4時間浸せきにより、始めて完全な撲滅効果を示しているが、は場ではその効果は発揮されていない。

考察

1961年度の当方はかんぱつのため一般に本病のまん延が低調であり、したがって子のう殻形成数も少なく、その枝条面付着数は前年度に比較してきわめて少数であった。本試験目的のために枝条面付着子のう殻数の多いは場が選定されたにもかかわらず、当年は
第8表 石灰イオウ合剂浸せき時間と子のう殻撲滅効果

<table>
<thead>
<tr>
<th>浸せき時間（分）</th>
<th>濃度（倍）</th>
<th>調査子のう殻数</th>
<th>削減子のう殻数</th>
<th>削減子のう殻数百分率（％）</th>
<th>透出数</th>
<th>発芽率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>25</td>
<td>538</td>
<td>29.5</td>
<td>60.0</td>
<td>10.5</td>
<td>70.5</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>603</td>
<td>47.9</td>
<td>42.9</td>
<td>9.2</td>
<td>52.1</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>511</td>
<td>47.4</td>
<td>45.6</td>
<td>7.0</td>
<td>52.6</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>516</td>
<td>51.9</td>
<td>41.9</td>
<td>6.2</td>
<td>48.1</td>
</tr>
<tr>
<td>15</td>
<td>25</td>
<td>548</td>
<td>96.3</td>
<td>3.3</td>
<td>0.4</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>514</td>
<td>92.8</td>
<td>6.0</td>
<td>1.2</td>
<td>7.2</td>
</tr>
<tr>
<td>60</td>
<td>25</td>
<td>527</td>
<td>100.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>559</td>
<td>99.3</td>
<td>0.7</td>
<td>0</td>
<td>0.7</td>
</tr>
<tr>
<td>240</td>
<td>25</td>
<td>506</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>545</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

第9表 水浸せきが子のう殻におよぼす効果

<table>
<thead>
<tr>
<th>浸せき時間（分）</th>
<th>調査子のう殻数</th>
<th>削減子のう殻数</th>
<th>削減子のう殻数百分率（％）</th>
<th>透出数</th>
<th>発芽率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2*</td>
<td>780</td>
<td>22.9</td>
<td>56.8</td>
<td>20.8</td>
<td>77.1</td>
</tr>
<tr>
<td>4*</td>
<td>581</td>
<td>32.3</td>
<td>44.8</td>
<td>22.9</td>
<td>67.7</td>
</tr>
<tr>
<td>15*</td>
<td>630</td>
<td>20.9</td>
<td>54.3</td>
<td>24.8</td>
<td>79.1</td>
</tr>
<tr>
<td>60*</td>
<td>549</td>
<td>25.5</td>
<td>59.0</td>
<td>15.5</td>
<td>74.5</td>
</tr>
<tr>
<td>240*</td>
<td>537</td>
<td>18.4</td>
<td>54.2</td>
<td>27.4</td>
<td>81.6</td>
</tr>
<tr>
<td>0**</td>
<td>1097</td>
<td>6.9</td>
<td>87.1</td>
<td>6.0</td>
<td>93.1</td>
</tr>
<tr>
<td>0***</td>
<td>1087</td>
<td>17.9</td>
<td>71.3</td>
<td>10.8</td>
<td>82.1</td>
</tr>
</tbody>
</table>

* 1962年5月28日調査
** 萩液処理時期，すなわち2月9日における子のう殻の状態を示す。
*** 調査時期，すなわち5月23日における子のう殻の状態を示す。

その子のう殻の衰頽が著しく、本試験には決して好適とはいえない状態であった。枝条面に薬剤散布した後、その子のう殻撲滅効果は十分に確かめられたが、さらに進んで第1次発病まで観察することはできなかった。これは5月下旬〜6月中旬の連日、連夜にわたる降雨が、子のう殻の裂開、子のう胞子の射出、発芽および寄主体侵入という一連の感染過程をさまたげたからである。しかしながら、発病時間に控える実験の結果から、PCP 100倍液を冬期間に1回散布することにより、越冬中の子のう殻は完全に撲滅できるものと結論される。植物細胞組織内への浸透力が高まるとはずされるPMFに大きい効果がみられなかったが、これをさらに500倍の濃度にまで高めて使用しても、なお期待はもてないものと思われる。
石灰イオウ合剤は一般にうどんこ病雲に対してきわめて有効とされているが、やはり本病原菌子のう菌の撲滅効果においても期待できるものの一つである。しかしながら、越冬源の撲滅は完全に行なわれねば意味がないので、本剤の適用については疑問がある。イオウは親油性であって、うどんこ病菌や緑病菌のような乾燥抵抗性の胞子に対して有効であり、他方病菌やBotrytio 菌のごとき好水性菌に対してはその毒性はまるかに弱いとされている3)。

また、ミカンのそうか病の場合に、病斑中の胞を殺す目的でPCP加用石灰イオウ合剤が用いられているが3)，クワ裏うどんこ病菌子のう菌撲滅に対しても、本剤の効果は試験される必要があるよう。

摘　要

1. クワ裏うどんこ病の越冬源としての子のう菌の撲滅を目的として、PMF、シンメル、PCP、水銀ポルドウ、石灰ポルドウおよび石灰イオウ合剤の6種類の薬剤の効果が比較せられた。

2. 1962年2月2日および4月19日の2期に薬剤散布が実施され、各回ともPCP 100倍液で完全な撲滅効果がみられ、石灰イオウ合剤も後期に散布した場合は有効であった。なお、これら供試薬剤によるクワの薬害はみとめられなかった。

3. 15℃下の供試薬液に子のう菌をそれぞれ2, 4, 15, 60および240分間浸せき後薬効を調べたところ、PCPの撲滅効果が最も顕著であり、15分間浸せきにより子のう菌の裂開は全くおこらなくなる。石灰イオウ合剤がこれにつき、60分浸せきにより、前者と同様の効果がみとめられた。その他のものについては、は場および室内試験結果から、効果はほとんど期待できない。

4. したがって、越冬源としての子のう菌の撲滅はPCP 100倍液を冬期間1回散布することにより十分達成せられるものと思われる。

文　献

1) 青木 清・中里泰夫・石家達郎・鈴木弘子 1958. 日農雑 27: 342〜347.

4) 山本 剛 1958. 新農薬研究法，南江堂 P 817.