リンゴ‘ふじ’のこうあ部裂果及び内部褐変の発生機構及び発生抑制に関する研究

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>誌名</td>
<td>青森県産業技術センターりんご研究所研究報告 = Bulletin of Apple Research Institute Local Independent Administrative Institution Aomori Prefectural Industrial Technology Research Center</td>
</tr>
<tr>
<td>ISSN</td>
<td>21873771</td>
</tr>
<tr>
<td>著者</td>
<td>葛西, 智</td>
</tr>
<tr>
<td>巻/号</td>
<td>36号</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 1-44</td>
</tr>
<tr>
<td>発行年月</td>
<td>2012年11月</td>
</tr>
</tbody>
</table>

農林水産省 農林水産技術会議事務局筑波産学連携支援センター
Tsukuba Business-Academia Cooperation Support Center, Agriculture, Forestry and Fisheries Research Council Secretariat
Studies of the Developmental Mechanisms and Control Technologies of Fruit Cracking and Internal Browning in 'Fuji' Apples

Satoshi Kasai

Apple Research Institute, Aomori Prefectural Industrial Technology Research Center
Kuroishi, Aomori, 036-0332 Japan

キーワード：リンゴ, 'ふじ', こうあ部裂果, エクスパンション, NAA, 内部褐変, アスコルビン酸 - グルタチオンサイクル, 光環境

2012年7月30日受理
本報告は岩手大学大学院総合農学研究科学位論文として提出された。
目　次

I 緒言 ........................................................................................................... 4

II こうあ部葉果の発生とリンゴエクスパンション遺伝子 MdEXPA3 の発現パターンとの関係 … 6
1. 材料及び方法 ...................................................................................... 6
2. 結 果 ................................................................................................. 7
3. 考 察 ................................................................................................. 8
4. 摘 要 ................................................................................................. 9

III こうあ部葉果の発生抑制 .................................................................... 9
1. NAA によるこうあ部葉果の発生抑制 ................................................ 10
   1）材料及び方法 .............................................................................. 10
   2）結 果 .......................................................................................... 10
   3）考 察 .......................................................................................... 13
   4）摘 要 .......................................................................................... 14
2. こうあ部葉果の発生抑制を目的とした NAA 効力の効果に対する影響 … 14
   1）材料及び方法 .............................................................................. 14
   2）結 果 .......................................................................................... 15
   3）考 察 .......................................................................................... 16
   4）摘 要 .......................................................................................... 17

IV 内部褐変の発生機構 ........................................................................... 17
1. 内部褐変の発生経過及び褐変組織のポリフェノール含量 ............................ 17
   1）材料及び方法 .............................................................................. 17
   2）結 果 .......................................................................................... 18
   3）考 察 .......................................................................................... 19
   4）摘 要 .......................................................................................... 19
2. 内部褐変の発生と抗酸化システムとの関係 ......................................... 19
   1）材料及び方法 .............................................................................. 20
   2）結 果 .......................................................................................... 21
   3）考 察 .......................................................................................... 22
   4）摘 要 .......................................................................................... 25

V 樹体の光環境の改善による果実のアスコルビン酸含量の向上及び内部褐変の発生抑制 25
1. 材料及び方法 ...................................................................................... 26
2. 結 果 ................................................................................................. 26
3. 考 察 ................................................................................................. 28
4. 摘 要 ................................................................................................. 29
総合考察

総合摘要

引用文献

Summary

写真
I 言

リンゴぶじは'国光'×'デリシャス'の交雑種であり、
が良く、貯蔵性に優れたものから、1970年代以降、国内
での栽培面積は急増し、1980年代に入るとデリシャス
を抜いて最も多く栽培される品種となった（Yoshida
et al., 1995). 2010年現在、国内でのぶじの生産量は
440,100 tと全生産量の56.0%を占めており、いまだ品種
を圧倒している（農林水産省大臣官房統計局, 2012).
また、1990年代以降にリンゴの栽培が急激に伸びた中国
の影響もあり、全世界でのぶじの生産量は1千十万千
にを超え、世界で最も多く栽培される品種となった（O'
Rourke et al., 2003）。

青森県は国内随一のリンゴ生産拠点であり、2010年産
では、452,500 tと国内生産量の57.5%を占める（農林水
産省大臣官房統計局, 2012). 県内には971種のリンゴ貯
蔵施設が存在し、その収容能力は1人,737 tに及ぶことか
ら、生産した果実の大部分は貯蔵が可能である（青森県り
ごん生産指導要項編集会, 2012b). これにより、青森
県産リンゴは貯蔵果実を主体として周年的に供給されて
いるが、この体制を維持する上で、貯蔵性に優れるぶじ
への依存度は特に高い。県内でのぶじの生産量は、2010
年産で239,000 tと県内生産量の52.8%を占めることか
ら、品質的な欠陥が生じた場合にリンゴ産業全体に及ぼす影
響は大きく、年によって多発生し、問題とされるぶじの
果実障害は、生育期に発生するぶじの果実変異（Photo 1）
と貯蔵中に発生する内部褐変（Photo 2）である。これらの
果実障害は、その年のぶじの貯蔵期間を短縮させる制
限要因となることから、貯蔵者が流通業者などから対
策が強く求められているが、対策の確立に至っていない
のが現状である。

果実のぶじ部に果実を生じる欠点は、ぶじの育成当
初から指摘されていた（定盛ら, 1963). この問題が表
面化したのはぶじが基幹品種となった1980年代以降であ
る（橋本, 1988). 俗に「つるれ」または呼ばれる、味が
劣る上、貯蔵中に果実部分が腐敗しやすいことから商品
価値は著しく低下する。また、果実した果実が樹上で凍結
した場合、貯蔵の初期段階で果肉褐変が多発生すること
も確認されている（葛西ら, 2008). この果実は急生発
生がみられ、少発生であれば即売用として消費されるため
問題とはならないが、多発生した場合にはリンゴ産業に
与える影響は大きくなる。

ぶじ果実は、内部果実（Internal ring-cracking）
と外部果実（Stem-end splitting）に分類される（Photo
1; 葛西, 2006; Opara, 1996). 内部果実は、果実果実部の果
肉に至る亀裂で外観から判断しにくい。外部果実は、外
観から判明できる果実果実部の裂開であるが、ぶじでは内
部果実を伴っている場合がほとんどであることから、内部
果実の亀裂が拡大した結果と考えられている（Opara,
1996). 内部果実は外観があるだけでなく、貯蔵中に腐
敗を招きやすいことから、特に市場価値を低下させる。
内部果実は果実肥大期に当たる開期90日後から120日後
頃にかけて、外部果実は開期120日後頃から収穫期にか
て発生（葛西, 2006）。「デリシャス」など、品種に
よっては内部果実を伴わずに外部果実が発生する場合も
あるが、これは発生の様相が異なるものであり、ぶじで
の発生は極めて少ないことから、本研究では対象としな
ない。

こうあ外部果実対策の重要性の反面、これまで発生要因
に関する報告はほとんどなく、発生機構は明らかになら
れていない。こうあ外部果実の発生は、降雨との関係が深
く、果実肥大期の降雨量が多い年ほど発生やすい（葛
西, 2006). また、果実した果実は、果実肥大期の肥大
量が大きいことから、降雨に伴う旺盛な果実肥大が果実
を誘発すると考えられる（葛西, 2006). ぶじと発生の
様相が類似した果実では、果実の果実の果実の果実の
開口部に影響を与えたかったが、高湿度の湿気によ
り果実の発生率が高まったと報告されている（Opara
et al., 2003). これらを考慮すると、水分の取り込みによ
り促進される細胞伸張の動向を把握することが、発生機
構を知る鍵になると考えられる。細胞伸張は細胞壁の伸
展性に左右されることから（Cosgrove, 1997）、その制
御に関わる酵素やタンパクの作用性を解析することによ
り、この課題にアプローチし得ると考えられる。なか
でも、エクスパンションは細胞壁の伸展性を制御する最も
重要なタンパクとして知られている（Cosgrove, 1999）。

一方、こうあ外部果実の発生抑制に関する報告は極めて
少なく、有袋栽培（橋本, 1988; 葛西, 2006）や不織布
ーシートマチ（梅田, 2005）による効果が示唆されている
唯一である。この内部ぶじの栽培面積の増加は無袋栽培
であることから（青森県りごん生産指導要項編集会, 2012b），
有袋栽培は実質的な対策にはならない。一般
に、精緻な対策は栽培条件が異なる圃場間で効果が安定
しにくいことから、汎用性のある植物生育調節剤などを
利用した技術開発に取り組む必要がある。
ぶじの貯蔵中に発生する主な果実褐変障害は、内部褐変
（Internal ring-browning）と炭酸ガス障害（CO₂-induced
browning）である（塩田, 1984; Volz et al., 1998a;
Argenta et al., 2000). 炭酸ガス障害は、CO₂濃度が高
い環境下で誘発される障害で、貯蔵初期から発生がみら
れる。CA貯蔵では、適正な気体組成の範囲内（O₂濃度,
1.8～2.5％: CO₂濃度, 1.5～2.5％で管理することにより発生を回避できるため, 近年の国内流通においてはあまり問題とならない (青森県りんご生産指導要項編集部会, 2012a). 一方, 内部褐変は貯蔵5か月後頃（収穫翌年の3月下旬頃）から発生がみられる果肉褐変で, 年により多発して問題となる (福田, 1984). 青森県りんご「ふじ」は, 4月以降の長期貯蔵果実の流通量がふじの流通量全体の3割程度を占めることから (青森県農林水産部, 2011), 多発した場合にリンゴ産業に与える影響は大きい。


貯蔵中の果肉褐変の発生機構については古くから議論されており, 嫩気的環境下において発生するアセトアルデヒドやエタノールなどの揮発性物質が関係するという報告がある (Smagula et al., 1968; Argenta et al., 2002a; 2002b). しかし, これらは直接的な原因でないと考えられる (SmagulaおよびBramlage, 1977; Volz et al., 1998b; Fernández-Tuñillo et al., 2001) もあり, 発生機構についてはいまだ明らかになっていない. 近年では, 酸化ストレスが果肉褐変の発生に影響を与える最も重要な要因であるとの考え方が強まっている. 実際, 貯蔵中のアソシル酸 (Ascorbic acid, AA) 含量の低下や抗酸化酵素活性の低下が果肉褐変の発生に関与することを示唆する報告がリンゴ (De Castro et al., 2008; Gong et al., 2001) やセイヨウサシ (Frank et al., 2003; 2007; Veltman et al., 1999; 2000; Pintó et al., 2001) で多くなっている. このことから, 酸化ストレス制御機構の面からアプローチすることが内部褐変の発生機構を解明する鍵になると考えられる。

内部褐変の発生抑制に関する報告は, 著者の知る限り極めて少ない. 收穫前に抗酸化物質のDiphenylamine (DPA) を処理することにより, 果肉褐変の発生が抑制されるという報告はみられるが (Meheriuk, 1984; Argenta et al., 2002a; De Castro et al., 2008), 収穫後処理が敬遠される国内の消費者心理を考慮すると適用できる技術とは考えられない. 栽培段階において対応できる技術開発が望ましいと考えられる。

本研究では, 青森県のリンゴ産業全体に多大な経済的損失をもたらす果肉褐変及び内部褐変の発生機構の解明及び発生抑制技術の開発を目的とした. Ⅱでは, 本果実収穫の発生機構解明を目的として, 果実肥大期における果肉及び果皮組織のリンゴエクスパシオン遺伝子MdEXP3の発現パターンを解析した. Ⅲでは, 本果実収穫に対する植物生育調節剤を利用した賦活性のある対策として, ナフタレン酸 (Naphthalenic acid, NAA) 発揮による果実収穫の発生抑制効果を明らかにし, 実用化を想定した摘果剤との相互関係についても検討した. Ⅳでは, いまだ明らかでない内部褐変の発生機構について, 酸化ストレス制御機構の面から解明することを検討した. Ⅴでは, 反射マルシを利活用し, 樹体を取り巻く光環境を改善することで抗酸化物質であるAA含有を高め, 内部褐変の発生を抑制できるか検討した。

「ふじ」の果実収穫及び内部褐変の対策の確立は, 品種の問題であるもかかわらず, これまで明らかにされていない部分が多い. 本研究は, 「ふじの安定生産及び安定供給のための技術改善に寄与できるものと考えられる。

本研究の遂行及び本論文の作成にあたり, 致心深くご指導いただきました, 弘前大学農学生命科学部園芸農学科教授 岩川 修先生に深く感謝の意を表する. また, ご指導及びご助言いただいた, 山形大学農学部農林環境学会教授 西澤 隆先生, 並びに, 弘前大学農学生命科学部農生プラン科学教授 宮村一夫先生に深く感謝の意を表す. さらに, 本論文をご校閲いただいた, 岩手大学農学生命科学部農生プラン科学教授 蒔松木 駿先生に深く感謝の意を表す.

研究Ⅱの実験及び結果の取りまとめにあたり, ご指導いただいた, (独) 農業・生物系農業産業研究機構果樹研究所生理機能部門栽培生理研究室室長（当時）桝村芳記氏, 並びに, 同研究員（当時）坂村裕子氏に深く感謝の意を表す. また, MdEXP3クローンを提供していただいた弘前大学農学生命科学部農生プラン科学教授 原田俊雄先生に深く感謝の意を表す.

本研究は, (独) 青森県産業技術センターの中央研究所育成事業に基づいて実施されたものであり, 大学院派遺に際してご配慮いただいた, 岩手県立農業技術センター土肥三氏による指導, 本研究遂行にあたり, ご理解及びご支援いただいた, 青森県農林総合研究センターりんご試験場（当時）の外崎廃軍元場長, (地)青森県産業技術センターりんご研究所の岩谷 齋前所長及び川嶋浩三所長をはじめ, 職員の方々に深く感謝の意を表する.
II こうあ部裂果の発生とリンゴエクスパンシン遺伝子MdEXPA3の発現パターンとの関係

ふじのこうあ部裂果と発生の様相が類似した「ガラ」では、高頻度の浸水により裂果の発生が高まったと報告されている（Opara et al., 2000）。このことから、水分の取り込みによる細胞伸張が初期症状の内部裂果を誘発したと予想される。つまり、果皮組織と果肉組織の細胞伸張の不均衡が引き金となり、こうあ部に線状の亀裂を生じ、内部裂果が発生したと考えられる。これまで、リンゴの裂果の発生に対する果皮組織の伸張性の関与について指摘されてきた（Verner, 1998; Costa et al., 1983; Weiser, 1990; 山本ら, 1996）、組織の伸張性を測定することは困難であり、果皮組織の機械的特性を明確に評価した報告はない。

エクスパンシンは引張応力を受けた状況で細胞が伸張する際に細胞壁の伸展性を高める働きを持つ細胞壁タンパクである（McQueen-Mason et al., 1992; McQueen-Manson and Cosgrove, 1995; Cosgrove, 2000）。エクスパンシンは分解活性がなく、セルロースとヘミセルロースの結合を緩める機能を果たすと考えられている（McQueen-Manson and Cosgrove, 1994; Whitney et al., 2000）。

トマトやモメでは、いくつかのエクスパンシン遺伝子が果実肥大と相互に発現することが確認されている（Brummell et al., 1999; Hayama et al., 2001）。また、リンゴでは6つのエクスペンシン遺伝子が単離されており、その中でもMdEXPA3は、主に果実肥大期に発現することが確認されている（Wakasa et al., 2003; 左記の報告ではMdEXP2と表記されていた）。エクスパンシンは細胞壁の伸展性を高め、細胞伸張を誘導する機能を有することから、裂果の発生に関与すると考えられる。

実際、ライチでは、裂果やすい品種と裂果しにくい品種との間で、果肉組織におけるエクスパンシン遺伝子LcExp2の発現量が異なることが明らかとなった（Wang et al., 2006）。従って、果実肥大に関連するエクスパンシン遺伝子の発現パターンを解析することは、リンゴの裂果発生機構を解明する上で有用であると考えられた。

そこで、ふじのこうあ部裂果の発生機構解明を目的として、果実肥大期における果肉組織及び果皮組織のリンゴエクスパンシン遺伝子MdEXPA3の発現パターンを解析した。また、有袋栽培はこうあ部裂果の発生を抑制することから、被袋処理がMdEXPA3の発現に及ぼす影響についても検討した。

1. 材料及び方法
1）内部裂果及び外部裂果の発生率調査
2004年、青森県農林総合研究センターりんご試験場南果樹研究センター（現、青森県産業技術センターりんご研究所南果樹部）内の試験圃場（青森県三戸郡五戸町）にて栽培されている19年生のふじ／M. 9EMLAを12樹供試。滴け30〜170日後の期間に約10日間隔で1樹当たり3〜4個の試料（手摘）を採取し、果実のこうあ部から組織して裂果の有無を調査した。Opara（1996）の報告に準じ、こうあ部全果肉に細裂を生じた裂果を内部裂果とし、そのうち、亀裂が外部に表面化した裂果を外部裂果とし、それぞれカウントした。

2）果実肥大調査
2005年に慣行の栽培管理に従って被袋処理を行った。滴け35日後に市販の二重袋（小山内製果所、吉野）を用いて同一樹に無袋果と有袋果各30株を用意し、無袋処理と、滴け35日後に袋を廃棄した。有袋果及び無袋果は両樹とも滴け166日後に収穫し、内部裂果及び外部裂果の発生率を調査した。

3）被袋処理
2005年に慣行の栽培管理に従って被袋処理を行った。滴け35日後に市販の二重袋（小山内製果所、吉野）を用いて同一樹に無袋果と有袋果各30株を用意し、無袋処理と、滴け35日後に袋を廃棄した。有袋果及び無袋果は両樹とも滴け166日後に収穫し、内部裂果及び外部裂果の発生率を調査した。

4）ノーザンプロット解析に供した材料
果肉組織及び果皮組織における発現比較解析では、2004年に滴け30〜150日後までの期間に約20日間隔で採取した果実を供試した。また、有袋果及び無袋果における発現比較解析では、2005年に滴け35〜171日後の期間に約20日間隔で採取した果実を供試した。果実全体から果肉組織及び果皮組織（厚さ2 mm）をキチンナハイで切り分け、直接に液体抽出で凍結後、RNA抽出までの間-80度にて保存した。

5）RNA抽出及びノーザンプロット解析
Total RNAの抽出は、10 gの凍結組織からHot borate法（Wan and Wilkins, 1994）によった。5%（v/v）のホルムアルデヒドを含む12%アガロースゲルに1〜2mmに全球最大なるTotal RNAをローディングし、電気泳動を行った後に、ハイブリダイゼーションブッファー（Hybridization buffer（DIG Easy Hyb Granules, Roche Diagnostics, Germany）内）にて凍結を行った。メプランの洗浄は、68℃恒温下で0.1×SSC及び0.1% SDSにより15分で行なった。
間行い、2回繰り返した。その後、メンプランとX線フィルム（富士フィルム、東京）をカセットにセットし、オートラジオグラフィーを行った。

6）統計解析
統計解析は、アドインソフトEXCEL統計ver. 6.0（エスミ、東京）を用い行った。有袋果と無袋果の果実については r検定を行い、袋果の発生率については χ²検定を行った。

2．結果
1）果実発生と果実肥大的関係
最初の内部裂果の発生は満開92日後に観察され、発生率は満開120日後まで急激に上昇し、その後、収穫時まで同水準で推移した（Fig. 1A）。外部裂果は満開141日後に初めて観察されたが、発生率はその後上昇しなかった（Fig. 1A）。外部裂果が発生した全ての果実は内部裂果を伴っていたことから、以前、Opara（1996）がガラや‘ふじ’で報告したように、外部裂果は内部裂果の亀裂が拡大した結果であることが再確認できた。また、果実肥大はシグモイド曲線に沿う傾向を示した（Fig. 1B）、内部裂果の発生率が上昇したのは、満開80〜120日後の果実肥大盛期に当たる時期であった。

2）果実肥大期における果肉組織及び果皮組織のMdEXPA3の発現パターン
果実肥大期における果肉組織及び果皮組織のMdEXPA3の発現パターンを比較するため、MdEXPA3の mRNA 異常をノーザンプロット解析により観測した。果肉組織におけるMdEXPA3のmRNA 異常は、満開30日後にわずかに認められ、その後、満開95日後にかけて増加したが、以降は徐々に減少した（Fig. 2）。一方、果皮組織におけるMdEXPA3のmRNA 異常は、満開50日後にわずかに認められ、その後、満開109日後にかけて増加し、それ以降は満開150日後まで同水準で推移した。

Days after full bloom
30 50 72 95 109 130 150
Flesh tissue
Pericarp tissue

Fig. 2. mRNA accumulation of MdEXPA3 in flesh and pericarp tissue during fruit growth in ‘Fuji’ apples. Total RNA (30 μg per lane) was used for northern blot analysis and hybridized with DIG-labeled probes. Ethidium bromide-stained rRNA is shown as loading control.

3）果実肥大期における有袋果及び無袋果のMdEXPA3の発現パターン
MdEXPA3の発現と裂果発生の関係をより明確にするため、有袋処理が発生に及ぼす影響について検討した。有袋処理は果実肥大に影響することなく、収穫時における内部裂果及び外部裂果の発生率を約8分の1に抑制した（Table 1）。果肉組織におけるMdEXPA3のmRNA 異常パターンは被袋処理による影響を受けなかったが、果皮組織では、被袋処理によってmRNA 異常が増加する傾向を示した（Fig. 3）。満開49日後の無袋果の果皮組織ではMdEXPA3のmRNA 異常がほとんどみられなかったのに対し、有袋果では明らかに異常が確認された。
Table 1 Effects of bagging on fruit weight and incidence rates of internal ring-cracking (IRC) and stem-end splitting (SES) at harvesting time in 'Fuji' apples.

<table>
<thead>
<tr>
<th>Fruit number</th>
<th>Fruit weight (g)</th>
<th>Incidence rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagged fruit</td>
<td>123</td>
<td>4.0</td>
</tr>
<tr>
<td>Non-bagged fruit</td>
<td>161</td>
<td>16.0</td>
</tr>
<tr>
<td>t-test</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>χ²-test</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Materials and methods:... 

The results are shown in Table 1. The bagging treatment resulted in a significant increase in fruit weight and a decrease in incidence rates of internal ring-cracking and stem-end splitting. 

Fig. 3. MdEXPA3 mRNA accumulation in flesh and pericarp tissue of non-bagged and bagged 'Fuji' apples during fruit growth. In the bagging treatment, fruits were kept in double paper bags from 35 days after full bloom (DAFB) until 125 DAFB. Total RNA (30 µg per lane) was used for northern blot analysis and hybridized with DIG-labeled probes. Ethidium bromide-stained rRNA is shown as loading control.

3. 考察

この変異繊維の初期症状である内部繊維の発生、開花80〜120日後における急激な果実肥大に関与すると考えられた（Fig. 1）。果肉組織の細胞伸張は果実肥大と密接な相関関係を示すが（Smith, 1950）、細胞伸張は細胞壁の伸展性に強く関係しており（Cosgrove, 1997）、エクスパンシンはその過程を制御すると考えられている（Cosgrove, 1999）。つまり、エクスパンシンが細胞壁の伸展性を高めることにより、細胞壁の緊張が緩和し、吸水に伴う細胞の膨張が高まることによって細胞伸張が促進されることになる。

今回の調査により、果実肥大期におけるMdEXPA3の発現パターンが、果肉組織と果皮組織では異なることが明らかとなった。果肉組織におけるMdEXPA3のmRNA蓄積量は、開花30日後にわずかに認められ、その後、開花95日後において増加したが、それ以降は徐々に減少した（Fig. 2）。このパターンは果実肥大期と相応したことから（Fig. 1B）、MdEXPA3は果肉細胞の伸展性を制御することにより果実肥大をコントロールすると考えられた。一方、開花30日後の果皮組織では、MdEXPA3のmRNA蓄積が確認されず、開花50日後以降に徐々に蓄積が増加した（Fig. 2）。内部繊維は主に果皮組織でのMdEXPA3のmRNA蓄積量が果肉組織での蓄積量を下回る時期に発生した。すなわち、果肉組織（内性）の細胞伸張が果皮組織の細胞伸張を上回っていた可能性が考えられた。この果実肥大期における細胞伸張の不均衡が繊維発生の引き金となり、内部繊維の発生に至ったと考えられた。この解釈は被袋処理により繊維を抑制した結果からも支持される（Table 1）。果皮組織におけるMdEXPA3のmRNA蓄積は、有袋果では有袋果よりも生育の早い段階で確認され、果肉組織では両者間で差がみられなかった（Fig. 3）。このように、被袋
処理は果皮組織におけるMdEXP3の発現を誘導することにより、果実の発生を抑制したと予想される。無袋果ではMdEXP3のmRNA蓄積量が果皮組織よりも果皮組織で高かったことから、有袋果では果皮組織の働きにより旺盛であった果肉細胞の伸張に対し、果皮組織の伸張が追従できなかったように想定される。同様の結果がライチで報告されており、裂果しにくい品種'Huazhizi'に裂果しやすい品種'Nuomici'での比較において、果実肥大盛期における果実組織でのLeExp2のmRNA蓄積量が両品種とも高かったものの、'Huazhizi'では果皮組織におけるLeExp2のmRNAの蓄積が認められたのにに対して、'Nuomici'では認められなかった（Wang et al., 2006）。リンゴスティーマンでは、果実肥大盛期における果肉組織の伸張に果皮組織の伸張が十分に追従できなかった時に裂果が発生すると結論づけている（Verner, 1938; Costa et al., 1983; Weiser, 1990）。

こうあ部裂果の初期症状である内部裂果は果実肥大盛期に発生した。果肉組織におけるMdEXP3のmRNAの蓄積は果実肥大に応じたことがから、MdEXP3は細胞壁の伸張性を制御することにより果実肥大をコントロールする役割を果たしていると考えられる。一方、果肉組織での蓄積は果皮組織よりも遅い時期から開始した。つまり、果皮組織の細胞壁の伸張性は内部裂果が発生する果実肥大盛期において十分に高まっていなかったと考えられた。被袋処理が果皮組織におけるMdEXP3のmRNAの蓄積を促し、内部裂果の発生を抑制した事実は、この見解を裏付けるものである。

III こうあ部裂果の発生抑制

1. NAAによるこうあ部裂果の発生抑制

前項において、果肉組織及び果皮組織におけるリンゴエクスパンシン遺伝子MdEXP3の発現解析により、両組織間の細胞伸張の不均衡が裂果の発生に関与することが示唆された。このことから、果実肥大を抑制することが発生抑制技術の開発の鍵になると考えられた。被袋処理は裂果の発生を抑制できるが、栽培面積の過半数は無袋栽培であり、実際的な対策にはならない。一般に、栽培条件は栽培条件が異なる地域間で効果が安定しにくい、そこで、汎用性のある植物生育調節剤を利用した技術開発に取り組んだ。
NAAはオーキシン活性を持つ植物生育調節剤であり、リンゴ栽培では摘果剤や収穫前落果防止剤として世界的に古くから利用されている（Edgerton, 1973; Williams, 1979）。日本では現在、NAAは収穫前落果防止剤として実用化されているが、摘果剤としての農薬登録はされていない。2005年、筆者らはNAAのふじに対する摘果効果試験を実施した際、摘果効果は判然としなかったが、こうあ部裂果の発生が少ないう傾向にあったが、リンゴスティーマンでは、NAAをGA₃、ダミノジッド及びVapor Gard (Di-1-p-menthene) と混用処理した場合に裂果を抑制したとする報告がある（Byers et al., 1990）。また、オウトウ（Bullock, 1952; Yamamoto et al, 1992）やライチ（Huang et al., 2003）でもNAA処理による裂果抑制効果が報告されている。そこで、2006年、NAA処理によるふじのこうあ部裂果の発生抑制効果を確認するため、予備試験を行った。NAA処理はリンゴの摘果剤として諸外国で実用化されている範囲内の14.7 ppm の1回処理としたところ、満開から1か月の間での処理によって、こうあ部裂果の発生が抑制される結果が得られた（データ略）。この時期は果実の細胞分裂期に相当する（Bain and Robertson, 1951）。
この結果に基づき2007, 2008及び2009年の3か年、果実細胞分裂期のNAA処理によるリンゴ果の果実抑制効果を詳細に検討した。

1) 材料及び方法

(1) 供試樹、試験区の設定及びNAA処理方法
2007, 2008及び2009年の3か年、青森県産業技術センターりんご研究所内の試験圃場（青森県黒石市）に栽培されている20年生（2007年当時）のリンゴ/M.26を供試した。NAAの処理時期別に試験区を設定し、2007年は満開1, 2及び4週間後の各1回処理区及び無処理区、2008年は満開1, 2, 3及び4週間後の各1回処理区及び無処理区、2009年満開1, 2, 3, 4及び5週間後の各1回処理区及び無処理区とした。NAA処理区では、NAAの成分濃度が14.7 ppmとなるように水道水で300倍に希釈し、動力噴霧器を用いて果枝を蒸霧液が滴り落ちる程度に立木全面に散布した。展着剤は添加しなかっただけでよい。各区ともNAA処理終了後の6月中旬に標準果数になるように入摘にて摘果した。その後は慣行の栽培管理とした。

(2) 果実肥大及び果実品質の調査
摘果終了後に各区の中庸な30〜40果について、果実肥大変数を挙げる時期（2007年は満開85及び140日後、2008年満開88及び130日後、2009年満開80及び139日後）に、果実の横径最大値をデジタルキャリバーにより測定し、果実の高径は各調査日間の横径の差をその日数で除した値とし、横径日肥大量としてした。2007年満開181日後、2008年満開179日後、2009年満開175日後にラベルした果実を採取し、果重を測定し、果実品質に関する以下の項目を調査した。着色指数はふじ用カラーチャート（農林水産省果樹試験場専修班）を用いて、0（着色なし）〜6（濃紅色）で評価した。果肉硬度は直径11.3 mmのプランジャーを装着したベテロメータを用いて、赤道部の相対する2か所について測定し、その平均値とした。果汁可溶性固形物濃度は、Brix糖度計（PR-101 a, ATAGO, 東京）を用いて測定した。果汁酸度は、0.1 M水酸化ナトリウム水溶液の滴定法によるリンゴ酸換算値で示した。みつ指数、果実横径に占めるみつの発生程度を0（発生なし）〜4（発生大）で評価した（青森県りんご生産指導要項編集委員会, 2006）。

(3) 果実発生率の調査
先述の各年の収穫日に、各供試樹から1樹当たり100果程度を探取し、果実のこうじ部から縦断して果実の有無を調査した。Opara（1996）の報告に準じ、こうじ基部の果肉に亀裂を生じた果を内部果果として、そのうち、亀裂が果実表面化した果を外部果果として、それぞれカウントした。

(4) Cell number indexの測定
2008及び2009年、果実細胞分裂終了後の満開7週間後に各区の中庸な果実5果を採取し、横径をデジタルキャリバーで測定し、赤道部を横断し、横断面における果皮と果心線の中間部の果肉サブロを1果当たり2か所切り出し、FAA固定液により固定した。固定した果肉サブロから凍結ミクロトームを用いて切片を作成し、サファリンで染色後、光学顕微鏡により検査した。Sugiuira and Honjo（1995）の方法で方法、果肉細胞の拡大画像を0.5 mm四方の正方形の線を描き、その線に触れる細胞数を3反復でカウントすることにより、Cell-and cell space-size indexを算出した。その後、Harada et al.（2005）の方法に従い、果実細胞の拡大画像をCell-and cell space-size indexの値で除した値をCell number indexとした。

(5) 新梢長の調査
2007, 2008及び2009年の落ち前の12月に、各供試樹1樹当たり最終先端の新梢10本について、長さを測定した。

(6) 統計解析
統計解析は、アドインソフトEXCEL統計ver. 6.0（エスミ, 東京）により行った。果実の発生率については、母比率の多重比較をTukeyの方法により行い、p<0.05を基準に有意差の有無を判定した。その他の項目については、分散分析後、Tukeyの多重検定により、p<0.05を基準に有意差の有無を判定した。

2) 結果
(1) NAA処理がこうじ部果果の発生率, 果実肥大及びCell number indexに及ぼす影響
1) 2007年
NAAの処理時期別に、満開1, 2及び4週間後処理区を設け、無処理区と比較した。収穫時における内部果果及び外部果果の発生率は、いずれのNAA処理区においても無処理区よりも明らかに低かった（Table 2）。商品性を大きく低下させる内部果果の発生率は、無処理区の13.4%に対し、NAA処理区では0.4〜2.3%と5分の1以下となり、特に満開2週間後処理区で最も低かった。
満開85〜140日後の果実肥大盛期における横径日肥大量は、いずれのNAA処理区においても無処理区よりも有意に低かった（Table 2）。果実肥大盛期の横径日肥大量と収穫時期の内部果果または外部果果の発生率との相関係数は、いずれもr = 0.984（p < 0.01）であり、果実肥大盛期の果実肥大量と果実の発生率との間には密接な関連が認められた。
Table 2 Effects of NAA application during the stage of fruit cell division on the incidence of internal ring-cracking and stem-end splitting at harvest, fruit diameter growth rate during the stage of rapid fruit growth and cell number index in 'Fuji' apples.

<table>
<thead>
<tr>
<th>Year</th>
<th>Time of NAA application</th>
<th>Incidence at harvest (%)</th>
<th>Fruit diameter growth rate during the stage of rapid fruit growth ( \text{mm day}^{-1} )</th>
<th>Cell number index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Internal ring-cracking</td>
<td>Stem-end splitting</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>1 WAFB</td>
<td>6.1 b (^a)</td>
<td>2.3 b</td>
<td>0.338 a</td>
</tr>
<tr>
<td></td>
<td>2 WAFB</td>
<td>1.8 a</td>
<td>0.4 a</td>
<td>0.338 a</td>
</tr>
<tr>
<td></td>
<td>4 WAFB</td>
<td>8.8 b</td>
<td>2.3 b</td>
<td>0.348 a</td>
</tr>
<tr>
<td></td>
<td>Non-applied</td>
<td>24.7 c</td>
<td>13.4 c</td>
<td>0.389 b</td>
</tr>
<tr>
<td>2008</td>
<td>1 WAFB</td>
<td>45.6 c</td>
<td>22.4 c</td>
<td>0.473 b</td>
</tr>
<tr>
<td></td>
<td>2 WAFB</td>
<td>23.7 a</td>
<td>7.6 a</td>
<td>0.439 a</td>
</tr>
<tr>
<td></td>
<td>3 WAFB</td>
<td>37.6 b</td>
<td>13.1 b</td>
<td>0.441 a</td>
</tr>
<tr>
<td></td>
<td>4 WAFB</td>
<td>28.9 a</td>
<td>12.5 b</td>
<td>0.447 ab</td>
</tr>
<tr>
<td></td>
<td>Non-applied</td>
<td>41.2 bc</td>
<td>20.2 c</td>
<td>0.474 b</td>
</tr>
<tr>
<td>2009</td>
<td>1 WAFB</td>
<td>19.9 c</td>
<td>8.5 b</td>
<td>0.437 a</td>
</tr>
<tr>
<td></td>
<td>2 WAFB</td>
<td>18.6 bc</td>
<td>8.1 b</td>
<td>0.427 a</td>
</tr>
<tr>
<td></td>
<td>3 WAFB</td>
<td>13.6 ab</td>
<td>3.7 a</td>
<td>0.419 a</td>
</tr>
<tr>
<td></td>
<td>4 WAFB</td>
<td>13.1 a</td>
<td>3.2 a</td>
<td>0.433 a</td>
</tr>
<tr>
<td></td>
<td>5 WAFB</td>
<td>20.6 c</td>
<td>12.1 b</td>
<td>0.428 a</td>
</tr>
<tr>
<td></td>
<td>Non-applied</td>
<td>23.6 c</td>
<td>10.3 b</td>
<td>0.441 a</td>
</tr>
</tbody>
</table>

\( ^a \) The stage of rapid fruit growth: A period between 85 and 140 days after full bloom (DAFB) in 2007, 88 and 130 DAFB in 2008, 80 and 139 DAFB in 2009.

\( ^b \) WAFB: Weeks after full bloom.

\( ^c \) Values in each column followed by the same letters are not significantly different at \( p < 0.05 \).
(2) NAA処理が果実品質に及ぼす影響

i）2007年
収穫時の果重がNAAの満開2週間後処理区で299gと最も軽く、無処理区の352gに対して84.9％の重さであった（Table 3）。また、いずれのNAA処理区も果汁可溶性固形物濃度及び果汁酸濃度が無処理区よりもやや高かった（Table 3）。

ii）2008年
前年に同様に収穫時の果重が満開2週間後処理区で362gと最も軽く、無処理区の410gに対して88.3％の重さであった（Table 3）。また、NAA満開1週間後処理区で着色指数がやや低かったが、その他の項目はいずれのNAA処理区においても無処理区と同程度であった（Table 3）。さらに、各区の果実を0℃の普通冷蔵で翌年の4月中旬まで貯蔵し、果肉及び内部傷変の発生を調査したところ、いずれのNAA処理区においても無処理区と同等の発生率であった（データ略）。

iii）2009年
満開3及び4週間後処理区で果肉硬度がやや高かったが、その他の項目はいずれのNAA処理区においても無処理区と同程度であった（Table 3）。

Table 3 Effects of NAA application during the stage of fruit cell division on fruit quality at harvest in 'Fuji' apples.

<table>
<thead>
<tr>
<th>Year</th>
<th>Time of NAA application</th>
<th>Fruit weight (g)</th>
<th>Coloring index (0-6)</th>
<th>Flesh firmness (N)</th>
<th>Soluble solids content (Brix %)</th>
<th>Titratable acidity (%)</th>
<th>Water core index (0-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>1 WAFB 4</td>
<td>352 b</td>
<td>4.8 a</td>
<td>65.8 ab</td>
<td>15.0 b</td>
<td>0.352 b</td>
<td>2.6 ab</td>
</tr>
<tr>
<td></td>
<td>2 WAFB</td>
<td>399 ab</td>
<td>3.3 a</td>
<td>64.9 ab</td>
<td>13.7 a</td>
<td>0.371 a</td>
<td>1.8 a</td>
</tr>
<tr>
<td></td>
<td>3 WAFB</td>
<td>341 b</td>
<td>4.9 a</td>
<td>67.2 b</td>
<td>15.3 b</td>
<td>0.374 c</td>
<td>2.6 ab</td>
</tr>
<tr>
<td></td>
<td>Non-applied</td>
<td>352 b</td>
<td>4.7 a</td>
<td>64.5 a</td>
<td>14.0 a</td>
<td>0.324 a</td>
<td>2.8 ab</td>
</tr>
<tr>
<td>2008</td>
<td>1 WAFB</td>
<td>399 b</td>
<td>4.2 b</td>
<td>66.3 a</td>
<td>13.9 a</td>
<td>0.377 a</td>
<td>2.1 a</td>
</tr>
<tr>
<td></td>
<td>2 WAFB</td>
<td>362 a</td>
<td>4.2 b</td>
<td>66.3 a</td>
<td>13.9 a</td>
<td>0.377 a</td>
<td>2.1 a</td>
</tr>
<tr>
<td></td>
<td>3 WAFB</td>
<td>346 a</td>
<td>4.4 a</td>
<td>72.1 c</td>
<td>14.1 a</td>
<td>0.388 a</td>
<td>2.4 a</td>
</tr>
<tr>
<td></td>
<td>4 WAFB</td>
<td>359 a</td>
<td>4.3 a</td>
<td>72.1 c</td>
<td>14.0 a</td>
<td>0.397 a</td>
<td>2.2 a</td>
</tr>
<tr>
<td></td>
<td>5 WAFB</td>
<td>354 a</td>
<td>4.1 a</td>
<td>70.7 bc</td>
<td>14.1 a</td>
<td>0.390 a</td>
<td>1.9 a</td>
</tr>
<tr>
<td></td>
<td>Non-applied</td>
<td>364 ab</td>
<td>4.4 a</td>
<td>68.5 ab</td>
<td>13.3 a</td>
<td>0.353 a</td>
<td>1.9 a</td>
</tr>
</tbody>
</table>

4 WAFB: Weeks after full bloom.
7 Values in each column followed by the same letters are not significantly different at p < 0.05.
(3) NAA処理が新梢成長に及ぼす影響
2007, 2008 及び 2009 年のいずれの年も、NAA 満開 1 及び 2 週間後処理区では、処理直後から数週間の間、新梢先端の発芽を中心にエピナステの発生がみられ
た。新梢長は無処理区に比べて、2008 年の満開 2 週間後処理区で短く、2009年の満開 1 週間後処理区で長かったが、その他の区では各調査年とも差は認められなかった(Table 4)。

Table 4 Effect of NAA application during the stage of fruit cell division on shoot length in ‘Fuji’ apple trees.

<table>
<thead>
<tr>
<th>Time of NAA application</th>
<th>Shoot length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>2008</td>
</tr>
<tr>
<td>1 WAFB *</td>
<td>26.7 a</td>
</tr>
<tr>
<td>2 WAFB</td>
<td>24.1 a</td>
</tr>
<tr>
<td>3 WAFB</td>
<td>-</td>
</tr>
<tr>
<td>4 WAFB</td>
<td>25.7 a</td>
</tr>
<tr>
<td>5 WAFB</td>
<td>-</td>
</tr>
<tr>
<td>Non-applied</td>
<td>26.9 a</td>
</tr>
</tbody>
</table>

*WAFB: Weeks after full bloom.

Values in each column followed by the same letters are not significantly different at $p < 0.05$.

3) 考察
品質の低下から、市場実績上で特に問題とされる外部

"NAA処理の発生率は、2007年ではNAAの満開 1, 2 及び 4 週
間後処理区において、無処理区に対し 5 分の 1 以下と

かった。図果の発生が多かった 2008年では、満開 2, 3 及
び 4 週間後処理区において無処理区に対し半数程度、
2009年では満開 3 及び 4 週間後処理区において無処理区
に対し 3 分の 1 程度だった。これらのことから、果実
細胞分裂期のNAA処理は、リンゴの果皮の発生を
抑制する効果を有することが確認された(Tables 2)。満
開1週間後処理区では、2007 及び 2008年において効果が
著しく大きかったが、2009年では効果がみられなかった。
一方、満開 3 及び 4 週間後処理区では、試験を実施した
いずれの年においても効果を示した。

2007 及び 2008年では、果実肥大盛期における横径日

肥大と収穫時の果実の発生率との間に高い相関関係が
みられた。また、図果の発生率が無処理区より低かった
2007年の満開 1, 2 及び 4 週間後処理区、2008年の満開2 及
び 3 週間後処理区では、果実肥大盛期における横径日
肥大が無処理よりも有意に低かった。これらのことか
ら、果実細胞分裂期のNAA処理は、細胞分裂を抑制し
た可能性が示唆された(Tables 2)。Black et al. (1995) は、
リンゴ‘デリシャス’において、中心果の横径が約11
mm時にNAA処理をした場合に収穫時の小玉果の割合が
高く、NAA処理が細胞分裂を抑制した可能性を指摘し
ている。細胞数は果実の大きさと密接に関係することか
ら(Bain and Robertson, 1951; Harada et al., 2005),
NAA処理による細胞数の減少は、果実肥大盛期の果実肥
大を低下させることに関与したと考えられる。実際、
2008年におけるCell number indexの値と果実
肥大盛期の横径日肥大との相関係数は、$r = 0.837 (p = 0.077)$ または$r = 0.843 (p = 0.035)$ であり、細胞数と
果実肥大との間に関連がみられている(Tables 2)。ま
た、リンゴ‘デリシャス’及び‘エンパイア’の中心果 20 mm
時におけるNAA処理は、葉のCO2 同化作用を抑制したと
する報告や(Stopar et al., 1997)、リンゴゴールデンデ
リシャスにおける落花16日後のNAA 処理は、葉から果
実への光合成産物の転換を一時的に阻害したとする報告
(Schneider, 1978)があり、このような一時的な生長抑
制作用が細胞分裂の抑制に関与したと考えられる。II に
おいて、外部果実の初期症状である内部果実の発生が増
加する果実肥大盛期において、細胞伸展に関与するエク
スパンシオ遺伝子MdEXPA3 の発現量は果肉組織では高
いが、果皮組織ではまだ低い状態にあることを示し、両
者間に生じる細胞伸展の不均一性が内部果実の発生に起因
すると推察した。今回、NAA処理区において果実肥大盛
期の果実肥大が低下したことは、この不均一性の度合いを
緩和する方向に働いたのかもしれない。
一方、収穫時の果樹の発生率が無処理区より低かった2008年の満開 4 週間後、2009年の満開 3 及び 4 週間後の各処理区では、果実肥大盛期における蟹果日肥大量は無処理区との有意差が認められなかった（Table 2）．また、2009年の結果では、果実肥大盛期の蟹果日肥大量と果樹の発生率との相関係数が低く、両者間に関連は認められなかった（Table 2）．NA の葉への取り込みは、処理時の細胞条件の左右される（Williams, 1979），2009年は処理期間の降雨量がやや多く（平均年129%），日照時間が短かった（平均年73%）ことから、NA の葉への取り込みがやや緩慢となり、細胞分裂や果実肥大に及ぼす影響が明確に現れなかったと推察される．これらのことから、NA 処理による蟹果抑制効果は、果実肥大盛期の果実肥大量の低下のみに止まったと考えられなかった．

一方、リンゴの蟹果抑制薬では、細胞伸張に関与するエンド型キシリルカルバメチカルボン酸（ESCA）の葉への濃縮が、NA 処理によって増加することが報告されている（Lu et al., 2006）．なお、NA 処理が仏花の果実期におけるMIXPA3の発現に及ぼす影響を確認したところ、mRNA 蓄積量が増加する傾向は認められた（データ略）．今後、エクスパンション以外の細胞壁制御に関与する酵素の関与も検証する必要があるだろう．

2007 及び 2008 年の満開 2 週間後処理区では、収穫果の果実が無処理区より 1 割以上減少した（Table 3）．また、これらの区では、エビニステの発生や新梢伸長の抑制が認められ（Table 4）、また果実の変形も確認された．一方、満開 3 及び 4 週間後処理区では、試験を実施したいずれの年においても、果実品質や新梢伸長に及ぼす影響はみられなかった（Table 3, 4）．

以上から、リンゴ仏花の果実肥大盛期におけるNA 147 ppm の 1 回処理は、こうぶ部の果実の発生を抑制する効果を有し、果実品質や新梢伸長に影響しないのは満開 3 及び 4 週間後の処理であると考えられた．

4）摘 要

2007, 2008 及び2009 年の 3 か年、果実肥大盛期のNA 147 ppm の 1 回処理によるリンゴ仏花の果実抑制効果試験を行った．満開 2 週間後処理は、3 か年中 2 か年で果実抑制効果が認められたが、同時に収穫果の果実の低が認められ、新梢伸長が抑制される場合もあった．一方、満開 3 及び 4 週間後処理は、試験を実施したいずれの年においても果実抑制効果が認められ、果実品質や新梢伸長に及ぼす影響はみられなかった．また、NA 処理による果実抑制は、細胞数の減少に由来した果実肥大盛期における果実肥大量の低下が関与する可能性が考えられた．

2. こうぶ部果実の発生抑制を目的としたNAA処理が果実（花）の効果に及ぼす影響

満開 3 または 4 週間後におけるNA 147 ppm の 1 回処理は、果実品質や新梢伸長に悪影響を及ぼすことなく、こうぶ部果実の発生を抑制できることが示されたことから、産業現象での高い実用性が期待された．一方、NA 処理後に入手による果実を行った際、摘果された後に果実が通常よりも長期保存され、種子形成が不完全で早熟果実の結果を果実が収穫時まで収穫したと現象が観察された（Photo 3）．これにはNAA による多層形成の阻害作用によるものと推察された．

摘果業は労働力が不足した生産現場において重要な役割を果たしている．「仏花」を対象とした摘果剤としてのカルバチル（1-naphthyl methylcarbamate, NAC）は、満開 2 週間後前後の処理が奨励されており（青森県りんご産業指導要項編集部会，2012a），こうぶ部果実の発生抑制を目的とした満開 3 又は 4 週間後のNAA 処理と処理時期が近接することになる．このことから，NAA の離層形成の阻害作用によってNAC の果実抑制効果が低下するのではないかと懸念された．そこで、こうぶ部果実の発生抑制を目的としたNAC 処理がNAC の果実抑制効果に及ぼす影響について検討した．また、NAC の代替剤として、摘果剤のスラシル黄合剤（Lime sulfur, LS）を利用した場合についても検討した．

1）材料及び方法

（1）供試樹，試験区の設定及び処理方法

2010 及び 2011 年の 2 か年、青森県産業技術センターりんご研究所内の試験圃場（青森県黒石市）に栽培されて32 年生（2010年当時）の仏花「M. 26」を供試した．

満開日は両年とも 5 月 18 日であった．試験区の設定は両年とも同様とし、LS処理+NAA満開 3 週間後処理区（LS + NAA 3W），LS処理+NAA満開 4 週間後処理区（LS + NAA 4W），NAC処理+NAA満開 3 週間後処理区（NAC + NAA 3W），NAC処理+NAA満開 4 週間後処理区（NAC + NAA 4W），NAC処理区（NAC）及び無処理区とした．試験の規模について、2010年は各区 3 株，2011年は各区 3 株と同様． LS処理については、多硫化カルシウムを25.7%含む商品名「宮内石灰硫黄合剤」（宮内硫黄合剤，山形）を100 倍に希釈し，頂芽満開日及び葉芽満開日に動力噴霧器を用いて枝葉に葉液が満ちる程度に散布した．NAC処理については，NACを85%含む商品名「日産ミクロナダー（水和剤85）」（日産化學工業，東京）を1200 倍に希釈し，葉の商品名「ニーズ」（クライアイ化学工業，東京，ポリナチュルメチルアルコールジアルキルメチルシアンアミノメチルキシレン脂肪酸エステルを44.0%含む）を10%当た
り 10 ml 加用し、満開 2 週間後に動力噴霧器を用いて散布した。NAA処理については、1- ナフタレン酢酸ナトリウムを 4.4%含む商品名「ビオモニウム溶液」（アグロカネショウ、東京）を 3,000 倍に希釈し、動力噴霧器を用いて散布した。

(2) 落果率の調査
開花期直後に調査対象の花を（2010年は各区 10 花そう × 3 反復の計 30 花そう、2011年は各区 20 花そう × 3 反復の計 60 花そう）にあらかじめラベルをし、頂芽中心花数及び頂芽側花数を調査した。同時に、各区 5 本 × 3 反復の計 15 本の新梢にラベルし、腋芽果数を調査した。

摘果効果が個別でき判断された調査 40 日後前の 6 月下旬に、ラベルした果実または新梢を対象として、着果した頂芽中心果数、頂芽側果数及び腋芽果数を調査し、落果率を算出した。調査終了後は、各区とも手による摘果で通積果数に調整し、それ以降は慣行の栽培管理とした。

(3) 収穫時の果重及び摘果発生率の調査
2011年の試験において、収穫時の果重及び摘果率を調査した。11月9日に各区1辺当たり 100 果程度を採取し、果実の果色及び緑度に応じて果実の有無を調査した。

Opara（1996）の報告に準じ、この果実の中で果実を生じた果実を内部果実とし、その他果実を内部果実とし、それぞれカウントした。結果は各区の中間値を抽出して算定した。

(4) 統計解析
統計解析は、アドインソフト EXCEL 統計ver. 6.0（エスミ、東京）により行った。落果率及び摘果発生率について、母比率の多重比較を Tukey の方法によりを行い、p < 0.05 を基準に有意差の有無を判定した。結果については、分散分析後、Tukey の多重検定により、p < 0.05 を基準に有意差の有無を判定した。

２）結果
(1) こうあ部果実の発生抑制を目的とした NAA処理が摘果（花）数の効果に及ぼす影響
i) 2010年
NAC区では、頂芽側果及び腋芽果の落果率が無処理区より高く、明らかに摘果効果を示したが（Fig. 4）、その効果が現れ始めたのは処理 2 週間後頃からであった。一方、NACの効果が現れ始めると後にNAAを処理したNAC + NAA 3W区及びNAC + NAA 4W区では、頂芽側果の落果率が無処理区と同程度で、また、腋芽果の落果率はNAC + NAA 3W区では無処理区より低く、NAC + NAA 4W区では無処理区と同程度であった。これらのことから、こうあ部果実抑制を目的としたNAA処理はNACの摘果効果を低下させることができ、むしろ落果を抑制する場合もあった。

LS処理による摘果（果）効果は、処理 2 週間後頃にはほぼ完結したため、その後NAAを処理したLS + NAA 3W区及びLS + NAA 4W区の落果率はLS区と同程度で、無処理区より明らかに高かったことから、NAA処理によるLSの摘果（果）効果への影響はみられなかった（Fig. 4）。なお、頂芽中心果の落果率については、いずれの区も無処理区と有意差が認められなかった（Fig. 4）。

Fig. 4. Effect of naphthaleneacetic acid (NAA) application on thinning effect of lime sulfur (LS) or carbaryl (NAC) in ‘Fuji’ apples in 2010. Individual application time of LS or NAC was at full bloom or at two weeks after full bloom, and NAA was applied at three (3W) or four weeks (4W) after full bloom. Values in the figure followed by the same letters are not significantly different at p < 0.05.

ii) 2011年
NAC区では頂芽側果及び腋芽果の落果率が無処理区より高く、NACによる明らかな摘果効果が認められたが（Fig. 5）、その効果が現れ始めたのは、2010年と同様にやはり処理 2 週間後頃からであった。一方、NAC + NAA 3W区及びNAC + NAA 4W区では、頂芽側果の落果率が無処理区より低く、腋芽果の落果率は無処理区と同程度であった。これらから、2010年の結果と同様、こうあ部果実の発生抑制を目的としたNAA処理はNACの摘果効果を低下させることができ、むしろ落果を抑制する場合もあった。

LS + NAA 3W区、LS + NAA 4W区及びLS区は、腋芽果の落果率が無処理区と同程度であったが、頂芽側果の落果率はいずれの区も無処理区より高かったことから、LS処理による摘果（果）効果が認められた（Fig. 5）。なお、頂芽中心果の落果率については、LS + NAA 4W区及びLS区で無処理区より高かったが、それ以外の区では無処理区と同程度であった（Fig. 5）。

- 15 -
Fig. 5. Effect of naphthaleneacetic acid (NAA) application on thinning effect of lime sulfur (LS) or carbaryl (NAC) in ‘Fuji’ apples in 2011. Application details were the same as in Fig. 4. Values in the figure followed by the same letters are not significantly different at $p < 0.05$.

Table 5 Effect of combined application of chemical fruit thinners and NAA (as a fruit cracking reducer) on fruit weight and incidence rate of internal ring-cracking and stem-end splitting at harvest in ‘Fuji’ apple in 2011.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Fruit weight (g)</th>
<th>Incidence rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Internal ring-cracking</td>
</tr>
<tr>
<td>LS + NAA 3W</td>
<td>317 c</td>
<td>1.6 a</td>
</tr>
<tr>
<td>LS + NAA 4W</td>
<td>308 bc</td>
<td>1.7 a</td>
</tr>
<tr>
<td>LS</td>
<td>317 c</td>
<td>9.5 b</td>
</tr>
<tr>
<td>NAC + NAA 3W</td>
<td>296 bc</td>
<td>0.0 a</td>
</tr>
<tr>
<td>NAC + NAA 4W</td>
<td>291 a</td>
<td>1.2 a</td>
</tr>
<tr>
<td>NAC</td>
<td>311 bc</td>
<td>13.2 b</td>
</tr>
<tr>
<td>Non-treated</td>
<td>307 abc</td>
<td>13.5 b</td>
</tr>
</tbody>
</table>

* Application time of lime sulfur (LS), at full bloom; carbaryl (NAC), two weeks after full bloom; NAA 3W, three weeks after full bloom; NAA 4W, four weeks after full bloom.

* Values in each column followed by the same letters are not significantly different at $p < 0.05$.

3) 考察
摘果剤のNACのみを処理した区では、摘果対象となる頂芽摘果及び腋芽摘果の落果率が無処理区より高く、明ら
かな摘果効果を示したが、NAC処理の後にこうお部摘果
の発生抑制を目的としてNAAを処理した場合、NACによ
る摘果効果が低下し、むしろ落果を抑制する場合もあっ
た。一方、摘花剤のLS処理の場合、LSによる摘花（果）
効果は処理 2 週間後頃には効果がほぼ完結し、その後に
NAAが処理されたことから影響はなかった。これらの結
果は、2010及び2011年の両年とも同様であった（Fig. 4, 5）。

NAC処理された果実は、NACが維管束組織に蓄積
し、果実への養分輸送が阻害され、生育が阻害される
ことで離脱が促されることを考えられている（Williams and
Batjer, 1964）。また、NAAの摘果作用機構について
は、光合成産物の転化抑制促進（Schneider, 1978）や離
層を挟んだ組織のオキシジン濃度均一化説（樫松ら, 1989）
などが提唱されてきた。近年、Zhu et al. (2008) は、幼
果期のNAA処理により離層部のエチレン生成と実験遺伝
子群やゴリラグクソジョンの遺伝子MdPG2の発現量が高
まることを示し、これらが果実の離脱に関連すると提案
した。一方、Li and Yuan (2008) は取種期前のNAA処
内部褐変の発生機構

1. 内部褐変の発生経過及び褐変組織のポリフェノール含量

内部褐変は、有袋果に比較してみつの発生が多い無袋果で発生しやすいことが知られている（斎藤, 1982）。また、リンクゴの切り口が褐変する現象は、ポリフェノールオキシダーゼ（Polyphenol oxidase, PPO, EC 1.10.3.1）によるポリフェノール（Polyphenol, PP）類の酸化に起因することから（Murata et al., 1995）、内部褐変の褐変現象も同じくPP類の酸化が関与するものと想定される。そこで、無袋果及び有袋果の内部褐変の発生経過を確認するとともに、内部褐変の褐変過程とPP類の酸化との関係について明らかにすることを目的とした。

1）材料及び方法

（1）供試材料

2007年及び2008年の3か年、青森県産業技術センター里んご研究室内の試験圃場（青森県黒石市）に栽植されている15年生（2007年当時）のマルバカイドウ台ふじの無袋果及び有袋果供試した。有袋栽培は、市販の二重袋（小山内製果株式、青森）を用いて青森県りんご生産指導要項（青森県りんご生産指導要項編集委員会、2006）の記載に準じ、6月下旬に被袋し、9月下旬に除袋した。無袋果及び有袋果の収穫はいずれも同日とし、2007年は11月8日、2008年及び2009年は11月5日とした。収穫後は障害果を除き、中庸な大きさの果実を0℃の普通冷蔵で貯蔵した。

1）概要

「ふじ」の有袋果の発生抑制を目的としてNAAを処理する場合、NACの摘出効果を低下させるが、LSの摘花（果）効果には影響しないことが明らかとなった。また、LSと併用した場合でもNAA処理による明らかな果実発生抑制効果が認められ、果実への影響もみられなかったことから、摘果作業の省力化も図れる上では、LSとの併用が実用的であると考えられた。

4）摘 要

「ふじ」の有袋果の発生抑制を目的としてNAAを処理する場合、NACの摘出効果を低下させるが、LSの摘花（果）効果には影響しないことが明らかとなった。また、LSと併用した場合でもNAA処理による明らかな果実発生抑制効果が認められたことから、LSとの併用が実用的であると考えられた。
3, 5 μm, 21 mm×150 mm, H立製作所, 東京），溶液液
は0.1%水酸+アセトントリル：水=80:20, 流速は0.3 mL/
分, 検出波長はUV 280 nm, ターム温度は40℃, イオ
ン源はソニックスプレイイオン源（SSI）を用い, 負イオ
ンモードで行った。

(5) PPOの抽出
果肉組織10 gからアセトンパウダーを調製し, 0.5 gの
アセトンパウダーを40 mLのMcIlvaine buffer (pH 5.0)
中でホモジナイザー（マイクロテック・ニチオン, 千
葉）を用いて研磨後, 濾紙（No. 2, ADVANTEC, 東京）
で濾過し, 4 ℃, 10,000 × gで30分間遠心分離して得ら
れた上清をPPO抽出液とした。

(6) 基質別のPPOの反応速度の測定
基質としてクロロゲン酸または(-)エピカテキンまたは
(+)-カテキン（Sigma, USA）を用いた。30 ℃の気密条
件下で0.8 mLの10 mM基質液及び0.2 mLのPPO抽出液を
混和し, 微量溶存酸素計（TD-650, 東興化学研究所, 東
京）により酸素吸収量を測定した。

(7) 統計解析
統計解析は, アドインソフトEXCEL 統計ver. 6.0 （エ
スミ, 東京）を用い, t検定により平均値を比較した。

2) 結 果
(1) 無袋果及び有袋果の収穫時のみつの発生程度
2007, 2008及び2009年のいずれの年も, 収穫時におけ
る無袋果のみつの発生程度は有袋果よりも大きかった
（Table 6）。

Table 6 Water core index of bagged or non-bagged 'Fuji'

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Water core index</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagged fruit</td>
<td></td>
<td>1.7</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Non-bagged fruit</td>
<td></td>
<td>2.3</td>
<td>2.6</td>
<td>2.3</td>
</tr>
</tbody>
</table>


(3) 内部褐変が発生した果実の褐変組織におけるPP含量
内部褐変が発生した果実の褐変組織におけるクロロゲ
ン酸含量は, 健全組織よりも低かった（Table 7）．ま
た, (+)-エピカテキン含量は両組織間で差がみられず, 褐
変組織では(-)-カテキンは含まれていなかった。

Table 7 Contents (mg/100g FW) of individual polyphenols of
internal browning injured flesh tissues in ‘Fuji’ apples.

<table>
<thead>
<tr>
<th>Ala (mg/100g FW)</th>
<th>(-)-epi-catechin (mg/100g FW)</th>
<th>(+)-catechin (mg/100g FW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injured tissue</td>
<td>18.0</td>
<td>4.7</td>
</tr>
<tr>
<td>Sound tissue</td>
<td>19.9</td>
<td>5.2</td>
</tr>
</tbody>
</table>

t-test ** ； n.s. ；

* Significant different at p < 0.05.
** Not significant.

(4) 基質別のPPOの反応速度
PPOの反応速度は, (+)-エピカテキンまたは(+)-カテキ
ンを基質とした場合よりもクロロゲン酸を基質とした場
合が早かった（Fig. 7）。

Fig. 6. Incidence of internal browning in bagged or non-
bagged 'Fuji' apples during storage at 0 ℃.

* Light, injured area accounts for <25% of cross-section; Moderate, 25 to 50%; Severe, >50%.

(2) 無袋果及び有袋果の内部褐変の発生の推移
2007, 2008及び2009年のいずれの年に生産された果実
においても, 内部褐変の発生は貯蔵5か月後からみら
れ, それぞれは症状が進行した（Fig. 6）。また, いずれ
の年も無袋果是有袋果よりも内部褐変の発生率が高く,
その程度も大きかった。
前段階で、その隔離を担う体外膜に何らかの異常が生じる必要がある（De Castro et al., 2008; Frank et al., 2007）。

生体膜の異常は、活性酸素種（Reactive oxygen species, ROS）による脂質過酸化に起因すると考えられている（Shewfelt and Purvis, 1995）。ROSはストレス環境下に置かれた細胞内で生成し、脂質の他、タンパク質や核酸にも悪影響を及ぼして細胞にダメージを与える（Blokchina et al., 2003）。

ここで、植物細胞内ではROSの制御機構が働き、細胞を正常な状態で維持しているが、このバランスが崩れるとROSによる細胞へのダメージは強まる。内部褐変の褐変現象が酵素的褐変であるとすれば、その前段階でROSによる細胞へのダメージが生じた可能性を考えられる。今回の、みつの発生数が大きい無果を内部褐変の発生率が高かったことから（Table 6, Fig. 6）、みつの発生がROSの生成やその制御機構に何らかの影響を与えた可能性があり、これについて明らかにする必要があると考えられた。

4) 摘要

みつの発生数が大きい無果では、有袋果よりも内部褐変の発生率が高かった。内部褐変が発生した果実の褐変組織、特に褐変した果実の褐変組織は、健全組織よりもクロロゲン酸の含量が低かった（Table 7）、さらに、酵素的褐変はPP含量の減少を伴うことが報告されている（Amiot et al., 1992; Murata et al., 1995）。これらの結果から、内部褐変の褐変現象はクロロゲン酸をはじめとしたPP類がPPOにより酸化された酵素的褐変であると推察された。

酵素的褐変が生じたことは、PPとPPOが接触したことである。しかし、通常のリンゴの細胞では、PPOはプラスチド内に局在していることから（Murata et al., 1997）、細胞模や液胞内にPPるとPPOとは隔離されており、両者の接触は困難である。そのため、両者が接触する時段階で、その隔離を担う体外膜に何らかの異常が生じる必要がある（De Castro et al., 2008; Frank et al., 2007）。

生体膜の異常は、活性酸素種（Reactive oxygen species, ROS）による脂質過酸化に起因すると考えられている（Shewfelt and Purvis, 1995）。ROSはストレス環境下に置かれた細胞内で生成し、脂質の他、タンパク質や核酸にも悪影響を及ぼして細胞にダメージを与える（Blokchina et al., 2003）。一方で、植物細胞内ではROSの制御機構が働き、細胞を正常な状態で維持しているが、このバランスが崩れるとROSによる細胞へのダメージは強まる。内部褐変の褐変現象が酵素的褐変であるとすれば、その前段階でROSによる細胞へのダメージが生じた可能性を考えられる。今回、みつの発生数が大きい無果を内部褐変の発生率が高かったことから（Table 6, Fig. 6）、みつの発生がROSの生成やその制御機構に何らかの影響を与えた可能性があり、これについて明らかにする必要があると考えられた。

2) 内部褐変の発生と酸化システムとの関係

みつは成熟した果実ほど多く発生することから、完全に成熟した果実の果実として国内の消費者に好まれる一方、貯蔵中の内部褐変や炭酸ガス障害といった果肉褐変の発生を助長することが知られている（Fukuda, 1983; 福田, 1984; Argenta et al., 2002a; 2002b; Load and Damon, 1966; Smagula et al., 1968）。果実褐変の発生機構については古くから議論されており、CA貯蔵や湿熱が発生した果肉組織（みつ組織）のような雰囲気の環境下において蓄積するアセトアルデヒドやエタノールなどの揮発性物質が関与するという報告（Smagula et al., 1968; Argenta et al., 2002a; 2002b）や、CO₂濃度の環境下では、クエン酸回路におけるコハク酸二ヒドロゲナーゼ活性が阻害され（Knee, 1973）、蓄積したコハク酸が炭酸ガス障害の発生に関与するという報告（Hulme, 1956）がある。しかし、アセトアルデヒド、エタノール及びコハク酸の蓄積は果肉褐変の直接的な原因ではないとする報告（Smagula and Bramlage, 1977; Volz et al., 1998b; Fernández-Trujillo et al., 2001）もあり、発生機構についてはいまだ
明らかになっていない。

貯藏前に抗酸化物質のDiphenylamine（DPA）を処理することにより、果肉褐変の発生が抑制されることがから（Meheriuk, 1984; Argenta et al., 2002; De Castro et al., 2008）。酸化ストレスが果肉褐変の発生に影響を与える最も重要な要因であると考えられている。実際、貯蔵中のアスコルビン酸（Ascorbic acid, AA）含量の低下や抗酸化酵素活性の低下が果肉褐変の発生に関与することを示唆する報告がいくつか知られている（De Castro et al., 2008; Gong et al., 2001）。

Fig. 8. Schematic view of the ascorbate-glutathione cycle (Noctor et al., 1998). Not all reactions are depicted stoichiometrically. APX, ascorbate peroxidase; AA, ascorbic acid; MDA, monodehydroascorbate; MDAR, monodehydroascorbate reductase; DHAR, Dehydroascorbate reductase; GR, glutathione reductase.

植物において、AAはROSの直接的な抗酸化成分として働くだけでなく、グルタチオン（Glutathione; GSH）やアスコルビン酸ペルオキシダーゼ（Ascorbate peroxidase, APX）などの酵素が活性を発揮し、それらを消去する役割を果たす。さらに、抗酸化酵素を介して抗酸化反応が促進される（De Castro et al., 2008; Frank et al., 2007）。

1）材料及び方法
(1) 供試材料
2008年、りんご研究所内圃場（青森県黒石市）に栽培されている16年生のマルバサイドウ台ふじを供試した。果実は収穫適期にあたる11月5日に収穫し、貯蔵を除いた中鳥の大ささの果実を0℃の普通冷蔵庫で貯蔵した。収穫を含め、貯蔵開始から1か月ごとに同一の果実からみつ組織及び非みつ組織とも数果から集めて一試料とした。AA含量の測定用または無酵素液の抽出用については凍結組織を用いたが、H₂O₂含量の測定用については生鮮組織を用いた。

(2) みつの発生程度の評価
収穫35日前から収穫日までの期間に樹上から採取した果実、または、貯蔵開始から貯蔵160日後までの期間に抽出した果実について、各調査時に30果を赤道方向に切断し、切断面に占めるみつの発生程度を4段階（0, 発生なし; 1, 輕; 2, 小; 3, 中; 4, 大）で評価した（青森県りんご生産指導要項編集委員会, 2006）。

(3) H₂O₂含量の測定
H₂O₂含量の測定はOkuda et al. (1991) の方法を
改変したVeljovic-Jovanovic et al. (2002)によるPeroxidase-coupled assay法を参照した。5 gの生鮮組織を5 % (w/v) のポリビニルポリビリドン（Polyvinylpolyalcohol, PVPA）を含む 20 ml の0.2 M 還元塩酸水溶液中でホモジナイザー（マイクロテク・ミクターン, 千葉）を用いて磨碎した。磨碎液を10,000 × gで10分遠心分離して得た上清に1 ml の0.3 M 塩酸酸化液（pH 5.6）を加え、5 M 炭酸カリウム溶液を滴下してからpH 5.6c 調整し、析出した還元塩酸カリウムを3,000 × gで1分遠心分離して除去した。その後、1 unit のAA oxidase（Sigma, USA）を加え、室温で10分間静置し、AAを酸化した。反応液は1 ml の試料、125 mM 3-dimethylamino) benzoic acid (DMPA) を含む400 μl の0.375 M 塩酸溶液（pH 6.5）、80 μl の1.33 mM 3-methyl-2-benzothiazoline hydrazone（MBTH）、20 μl の0.0125 unit Peroxidase (Sigma, USA) とし、総量を1.5 ml とした。Peroxidaseを添加して25℃下で10分間反応させ、590 nm の吸光度を分光光度計（UV-1600, 島津製作所, 京都）により測定した。(4) AA及びDHA含量の測定
5 gの凍結組織を、内部標準物質として0.067 mgのD-isoAAを含む15 mlの3% (w/v) メタクリル酸水溶液中でホモジナイザーを用いて磨碎した。磨碎液は遠心（No. 2, ADVANTEC, 東京）で過遠し、さらに得られた液をCelite 935メタセトアセチルペンゼンフィルター（0.45 μm, ADVANTEC, 東京）で遠遠し、AA含量測定用試料とした。これに還元剤のTris(2-carboxyethyl) phosphine hydrochloride（TCEP）を10 mlとなるように加え、室温で1時間以上静置させたものをTotal AA（AAA + DHA）含量測定用試料とした。測定はキャピラリーエレクトロ泳動装置（HP30CE system, Agilent Technologies, Germany）により行った。キャピラリーエレクトロ泳動装置はHewlett-Packard CE capillary（有効長: 56 cm, 内径: 50 μm, Agilent Technologies, Germany）に、泳動用溶液は5 % (v/v) のアセトトリトリルを含む50 mM メタクリル酸水溶液（pH 9.3, Agilent Technologies, Germany）を用いた。測定波長は265 nmとし、分析温度は25 ℃とした。DHA含量はTotal AA含量からAA含量を除した値とした。
(5) 酸素液の抽出
5 gの凍結組織を5 % (w/v) PVPP及び1 mM エチレンジアミン四酢酸（EDTA）を含む15 mlの50 mM 塩酸カリウム緩衝液（pH 7.8）中でホモジナイザーを用いて磨碎し、2層のミクロローダで遠遠し、4 ℃, 10,000 × gで10分遠心分離して得た上清をMDAR, DHAR及びGR活性測定用酸素液とした。一方、5 gの凍結組織を1 mM AA, 5 % (w/v) PVPP及び1 mM EDTAを含む15 mlの50 mM 塩酸カリウム緩衝液（pH 7.8）中で磨碎し、2層のミクロローダで遠遠し、4 ℃, 10,000 × gで10分遠心分離して得た上清をAPX活性測定用酸素液とした。酸素液中のタンパク質含量の測定は、Bovine gamma-globulinをスタンダードとしてBradford法（Bradford, 1976）により行った。(6) 酸素活性の測定
APX活性の測定は、Nakano and Asada (1981) の方法を参考に、測定した。反応液は50 mM 塩酸カリウム緩衝液（pH 7.0）、0.3 mM AA、1 mM H2O2、0.1 mM EDTA及び0.6 mM の酸素液とし、総量を1.5 ml とした。25 ℃下でH2O2の添加により反応を開始し、AAの酸化により300 nmにおける吸光度の減少量を測定した。300 nmにおけるAAの吸光係数は0.49 mM⁻¹ cm⁻¹とした。
MDAR活性は、Hossain et al. (1984) の方法を参考に、測定した。反応液は50 mM 塩酸カリウム緩衝液（pH 7.8）、0.3 mM AA、0.1 mM NADH、0.25 unit AA oxidase（Sigma, USA）及び0.6 mM の酸素液とし、総量を1 ml とした。25 ℃下でAA oxidaseの添加により反応を開始し、NADH の酸化に伴う340 nmにおける吸光度の減少量を測定した。340 nmにおけるNADHのモル吸光係数は6.2 mM⁻¹ cm⁻¹とした。
DHAR活性は、Nakano and Asada (1981) の方法を参考に、測定した。反応液は50 mM 塩酸カリウム緩衝液（pH 7.8）、0.2 mM DHA、25 mM GSH、0.1 mM EDTA及び0.6 mM の酸素液とし、総量を1 ml とした。25 ℃下でGSHの添加により反応を開始し、DHAの還元に伴う265 nmにおける吸光度の増加量を測定した。265 nmにおけるAAのモル吸光係数は14 mM⁻¹ cm⁻¹とした。
(7) 統計解析
統計解析は、アドインソフトEXCEL統計Ver. 6.0（エスミ, 東京）を用いて分散分析を行った。最も有意差を検出した（LSD, p = 0.05）を求め、平均値を比較した。(8) 結果
(1) 収穫前及び貯藏後のみつの発生程度
みつの発生は、収穫の約1か月前から線管束周辺に確認されはじめ、その程度は収穫期にかけて急激に増大した（Table 8）。一方、収穫後は貯蔵中にみつの程度は低下し、その傾向は貯蔵2か月後までに続かなかったが、その後は急激に低下し、貯蔵5か月後ではほぼ消失した。
Table 8 Water core ratings of 'Fuji' apples for the period from 35 d before harvest to 160 d after harvest.

<table>
<thead>
<tr>
<th>Days before or after harvest</th>
<th>Water core rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-harvest</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.0</td>
</tr>
<tr>
<td>26</td>
<td>0.8</td>
</tr>
<tr>
<td>9</td>
<td>2.0</td>
</tr>
<tr>
<td>Harvest</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2.6</td>
</tr>
<tr>
<td>Post-harvest</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>2.2</td>
</tr>
<tr>
<td>127</td>
<td>0.4</td>
</tr>
<tr>
<td>160</td>
<td>0.1</td>
</tr>
<tr>
<td>LSD (p = 0.05)</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Following harvest, fruit were stored at 0 °C.

* 0: None; 1: Trace; 2: Light; 3: Moderate; 4: Severe.

(2) 貯蔵後のみつ組織及び非みつ組織におけるH₂O₂含量の推移
収穫時のみつ組織のH₂O₂含量は105.6 nmol/g FWであり、非みつ組織の2倍近い値を示した（Fig. 9）。両組織とも貯蔵初期はH₂O₂含量が高まり、その後ば徐々に推移したが、いずれの時点においてもみつ組織のH₂O₂含量は非みつ組織よりも高い値を示した。

(3) 貯蔵後のみつ組織及び非みつ組織におけるAA及びDHA含量の推移
収穫時のみつ組織のAA含量は2.2 mg/100g FWであり、非みつ組織（5.9 mg/100g FW）の半数以下であった（Fig. 10A）。両組織とも貯蔵後160日後にAA含量は低下したが、みつ組織では貯蔵3ヶ月後に、非みつ組織ではそれより1ヶ月遅い貯蔵4ヶ月後にはわずかに増加した。貯蔵後のみつ組織のDHA含量は、非みつ組織よりも低い水準で推移した（Fig. 10B）。

(4) 貯蔵後のみつ組織及び非みつ組織におけるAA-GSH cycleに関わる酵素活性の推移
みつ組織のAPX活性は、収穫時及び貯蔵後のいずれの時点においても非みつ組織より高く推移したが、貯蔵期間の経過に従い両組織とも活性は緩やかに低下した（Fig. 11A）。一方、DHAR活性は両組織間に差がみられ、貯蔵期間の経過に従い低下した（Fig. 11B）。一方、MDAR及びGR活性は両組織間に大きな差はみられず、貯蔵期間の経過に伴い緩やかに高まった（Fig. 11C, D）。

3) 考察
植物においてROSを生成する主要な場は、ミトコンドリア内膜上の電子伝達系であると考えられている（Moller, 2001）。電子伝達系は、シトクロム経路において最終的に電子を酸素に受け渡す役割を果たすCytochrome c oxidase (COX)とエネルギー生産に関わらず、エピキノンブールの電子を酸素に受け渡す役割を果たすAlternative oxidase (AOX)の2つのTerminal oxidaseが存在する。これらのTerminal oxidaseの活性が阻害されると、電子が過剰に蓄積してエピキノンブールが過剰に生成することになるが、ROSの生成量が増加すると考えられている（Moller, 2001; Rhoads et al., 2006）。

みつ組織のH₂O₂含量は、収穫時及び貯蔵後のいずれの時点においても非みつ組織の含量を上回った（Fig. 9）。みつ組織は細胞間隙に水分を含むことから空気が狭く、
Fig. 11. Ascorbate peroxidase (APX) activity (A), dehydroascorbate reductase (DHAR) activity (B), monodehydroascorbate reductase (MDAR) activity (C) and glutathion reductase (GR) activity (D) in water core tissue and water core-free tissue of ‘Fuji’ apples during storage at 0 °C. Data shown are means ± S.E. (n = 4). Bars indicate LSD (p = 0.05).

APX活性が高まることにより、電子供与体のAAが酸化され、DHAの生成が促進される。しかし、収穫時及び貯蔵後のDHA含量は、みつ組織、非みつ組織ともに低い水準で推移した（Fig. 10B）。DHAは不可逆的な水分解を受けやすいことから、一定量以上の値がみられる前に消失してしまったと考えられる。言い換えると、DHAが完全にAAへと還元されない限り、APX活性が高まることはAAを消費することに繋がる。

みつは収穫の約1か月前から確認された（Table 8）ことから、樹上でみつが発生した時点でのみつ組織ではH₂O₂の生成量が高まり、それに伴ってAPX活性が高まっていった可能性を考えられる。もしそうであれば、AAの消耗はその時点で始まっており、収穫時のみつ組織のAA含量は非みつ組織よりも低くなったと推定される（Fig. 10A）。また、DHAR活性はみつ組織、非みつ組織ともに貯蔵期間の経過とともに低下した（Fig. 11B）。このことは貯蔵後のAAの消耗を抑えるには不十分であり、非みつ組織では貯蔵4か月後にみつ組織ではそれよりも1か月早い貯蔵3か月後にはほぼ消失してしまった（Fig. 10A）。みつ組織におけるAAの消去は、みつが観察されなくなる2か月前であったことから（Table 8、Fig. 10A）。一度みつが発生した組織では、その後のストレスから解放されたとしても、細胞内の抗酸化レベルが

APX活性が高まることにより、電子供与体のAAが酸化され、DHAの生成が促進される。しかし、収穫時及び貯蔵後のDHA含量は、みつ組織、非みつ組織ともに低い水準で推移した（Fig. 10B）。DHAは不可逆的な水分解を受けやすいことから、一定量以上の値がみられる前に消失してしまったと考えられる。言い換えると、DHAが完全にAAへと還元されない限り、APX活性が高まることはAAを消費することに繋がる。

みつは収穫の約1か月前から確認された（Table 8）ことから、樹上でみつが発生した時点でのみつ組織ではH₂O₂の生成量が高まり、それに伴ってAPX活性が高まっていった可能性を考えられる。もしそうであれば、AAの消耗はその時点から始まっており、収穫時のみつ組織のAA含量は非みつ組織よりも低くなったと推定される（Fig. 10A）。また、DHAR活性はみつ組織、非みつ組織ともに貯蔵期間の経過とともに低下した（Fig. 11B）。このことは貯蔵後のAAの消耗を抑えるには不十分であり、非みつ組織では貯蔵4か月後にみつ組織ではそれよりも1か月早い貯蔵3か月後にはほぼ消失してしまった（Fig. 10A）。みつ組織におけるAAの消去は、みつが観察されなくなる2か月前であったことから（Table 8、Fig. 10A）。一度みつが発生した組織では、後にストレスから解放されたとしても、細胞内の抗酸化レベル

APX活性が高まることにより、電子供与体のAAが酸化され、DHAの生成が促進される。しかし、収穫時及び貯蔵後のDHA含量は、みつ組織、非みつ組織ともに低い水準で推移した（Fig. 10B）。DHAは不可逆的な水分解を受けやすいことから、一定量以上の値がみられる前に消失してしまったと考えられる。言い換えると、DHAが完全にAAへと還元されない限り、APX活性が高まることはAAを消費することに繋がる。

みつは収穫の約1か月前から確認された（Table 8）ことから、樹上でみつが発生した時点でのみつ組織ではH₂O₂の生成量が高まり、それに伴ってAPX活性が高まっていった可能性を考えられる。もしそうであれば、AAの消耗はその時点から始まっており、収穫時のみつ組織のAA含量は非みつ組織よりも低くなったと推定される（Fig. 10A）。また、DHAR活性はみつ組織、非みつ組織ともに貯蔵期間の経過とともに低下した（Fig. 11B）。このことは貯蔵後のAAの消耗を抑えるには不十分であり、非みつ組織では貯蔵4か月後にみつ組織ではそれよりも1か月早い貯蔵3か月後にはほぼ消失してしまった（Fig. 10A）。みつ組織におけるAAの消去は、みつが観察されなくなる2か月前であったことから（Table 8、Fig. 10A）。一度みつが発生した組織では、後にストレスから解放されたとしても、細胞内の抗酸化レベル

APX活性が高まることにより、電子供与体のAAが酸化され、DHAの生成が促進される。しかし、収穫時及び貯蔵後のDHA含量は、みつ組織、非みつ組織ともに低い水準で推移した（Fig. 10B）。DHAは不可逆的な水分解を受けやすいことから、一定量以上の値がみられる前に消失してしまったと考えられる。言い換えると、DHAが完全にAAへと還元されない限り、APX活性が高まることはAAを消費することに繋がる。

みつは収穫の約1か月前から確認された（Table 8）ことから、樹上でみつが発生した時点でのみつ組織ではH₂O₂の生成量が高まり、それに伴ってAPX活性が高まっていった可能性を考えられる。もしそうであれば、AAの消耗はその時点から始まっており、収穫時のみつ組織のAA含量は非みつ組織よりも低くなったと推定される（Fig. 10A）。また、DHAR活性はみつ組織、非みつ組織ともに貯蔵期間の経過とともに低下した（Fig. 11B）。このことは貯蔵後のAAの消耗を抑えるには不十分であり、非みつ組織では貯蔵4か月後にみつ組織ではそれよりも1か月早い貯蔵3か月後にはほぼ消失してしまった（Fig. 10A）。みつ組織におけるAAの消去は、みつが観察されなくなる2か月前であったことから（Table 8、Fig. 10A）。一度みつが発生した組織では、後にストレスから解放されたとしても、細胞内の抗酸化レベル

APX活性が高まることにより、電子供与体のAAが酸化され、DHAの生成が促進される。しかし、収穫時及び貯蔵後のDHA含量は、みつ組織、非みつ組織ともに低い水準で推移した（Fig. 10B）。DHAは不可逆的な水分解を受けやすいことから、一定量以上の値がみられる前に消失してしまったと考えられる。言い換えると、DHAが完全にAAへと還元されない限り、APX活性が高まることはAAを消費することに繋がる。

みつは収穫の約1か月前から確認された（Table 8）ことから、樹上でみつが発生した時点でのみつ組織ではH₂O₂の生成量が高まり、それに伴ってAPX活性が高まっていった可能性を考えられる。もしそうであれば、AAの消耗はその時点から始まっており、収穫時のみつ組織のAA含量は非みつ組織よりも低くなったと推定される（Fig. 10A）。また、DHAR活性はみつ組織、非みつ組織ともに貯蔵期間の経過とともに低下した（Fig. 11B）。このことは貯蔵後のAAの消耗を抑えるには不十分であり、非みつ組織では貯蔵4か月後にみつ組織ではそれよりも1か月早い貯蔵3か月後にはほぼ消失してしまった（Fig. 10A）。みつ組織におけるAAの消去は、みつが観察されなくなる2か月前であったことから（Table 8、Fig. 10A）。一度みつが発生した組織では、後にストレスから解放されたとしても、細胞内の抗酸化レベル
は低い状態のままであると推察される。

Pinto et al. (2001) は、セイヨウナシ果実のCore browningが発生した部位でGR活性が上昇したことを報告しており、この見かけ上の矛盾は、DHAR活性の低下に伴うAA-GSH cycleの機能低下による反応的な反応ではないかと推察している。また、Zhao et al. (2009) は、貯蔵中のマンゴー果実においてGR活性が上昇したことを報告しており、これはストレス後の酸化還元系状態の修復に関与したのではないかと推察している。さらに、本調査においてMDAR及びGR活性が鏡やかに上昇したことは（Fig. 11C, D）、貯蔵期間の経過に伴って低下したDHAR活性とAA含量の低下による（Fig. 10A, 11B）AA-DHA cycleの機能低下に関与したのかもしれない。

以上から、みつ果肉褐変を誘発する機構について以下の仮説を提案したい（Fig. 12）。みつ組織の細胞は低O₂・高CO₂濃度下にあり、ミトコンドリア内膜上の電子伝達系におけるTerminal oxidasesの活性が抑圧される。その結果、ROSの生成が促進される。蓄積したROSは、レドックスシグナルとしてAPX遺伝子の発現を誘導し、APX活性が高まることでAAが消費される。みつ果肉成熟前から樹上で発生することから、収穫の時点でAAが存在しない。その上、DHAR活性が貯蔵後に低下するために、AAの消耗を抑えるには十分でなく、みつ組織の抗酸化レベルは低下する。最終的に、増加したROSにより生体膜がダメージを受け、フェノール物質が酵素的に酸化され、後に果肉褐変の症状として現れる。

セイヨウナシでは、CA貯蔵で果肉褐変が発生しやすいが、これは普通貯蔵よりもAA含量が低下しやすいことに関連すると指摘されている（Frank et al., 2003; Veltman et al., 1999; 2000; Pinto et al., 2001）。また、Larrigaudiere et al. (2001) の調査では、セイヨウナシ果実をCA貯蔵に移設してまとまるH₂O₂含量が増加し、同時にAPX活性の上昇とAA含量の低下がみられたが、この傾向は普通貯蔵よりも顕著であった。みつ組織内の環境をCA貯蔵と同様と見なせば、これらの結果はこの仮説に良く当てはまるものと考えられる。

今回の調査では、「ふじ」の内部褐変の発生は、みつがほぼ消失した貯蔵5か月後から観察された。この貯蔵障害は、収穫時のみつの発生程度と密接に関係しており、国内では通常、貯蔵5か月後から観察される（福田, 1984）。みつ果肉にストレスを与え、貯蔵中に抗酸化レベルの低下を招いたが、褐変現象が現れるまでには一定の時間を要した。このタイムラグは、ROSによる不飽和脂肪酸の過酸化やタンパク質の変性などに起因した生体膜の健全性の喪失が段階的に行進することに関係したと考えられる（Blokchina et al., 2003）。

![Fig. 12. A proposed mechanism of flesh browning affected by water core during cold storage. ROS, reactive oxygen species; APX, ascorbate peroxidase; AA, ascorbic acid; DHAR, dehydroascorbate reductase; AA-GSH cycle, ascorbate-glutathione cycle.](image-url)
Ⅳ 樹体の光環境の改善による果実のアスコルビン酸含量の向上及び内部褐変の発生抑制

Ⅳにおいて、内部褐変の発生には貯蔵後の果肉組織におけるAA含量の低下が関与することが示されたことから、内部褐変の発生を抑制するためには、収穫の段階でAA含量を高める必要があると考えられた。

植物におけるAA生成の主経路は、GDP-D-マンノース及びL-ガラクトースを代謝中間体とするD-マンノース/L-ガラクトース経路であり、最終的にL-galactono-1,4-lactone dehydrogenase（L-GalLDH（Lorence et al., 2004））やmyo-イノシトールを前駆体とするmyo-イノシトール経路も指摘されている（Lorence et al., 2004）。

葉でのAA生成は、光照射により活性化されることがシロイヌナズナの結果で報告されている（Bartoli et al., 2006; Yabuta et al., 2007）。また、AAはソース器官である果から供給を通じて根などのシンク器官へ長距離輸送されることが示唆されている（Franceschi and Tarly, 2002; Tedone et al., 2004）。さらに、Hancock et al. (2003) によると、ソース器官からの前駆体物質が供給管を通じて輸送される際に、特定組織においてAAが合成され、シンク器官に蓄積する可能性も指摘されている。

Davey et al. (2004) によると、リンゴの葉はAAを生合成できるが、果実及び果肉組織でのその能力がないとして、果実でのAAの蓄積は果からの輸送に依存していると推察されている。また、このAAの輸送を検証する結果として、果実内のAAは維管束周辺部に分布しているという報告もみられる（Felinicetti and Mattheis, 2010; Li et al., 2008）。Li et al. (2008) は、果皮及び果肉組織ともAAを生合成する能力を有するとして、果皮組織の順向間葉果実への生合成及び酸化性のAAのリサイクルが活性化したもの、果肉組織でのその傾向が認められなかったと報告している。このことは、果実への直射光は果肉組織におけるAA含量の増加に寄与することを想像せせる。実際、Li et al. (2009) はその後の調査で果実でのAAの蓄積が果実への光照射に一部依存していると考察している。

これらの結果を考慮すると、ソース器官である葉への光照射が重要であり、樹体を取り巻く光環境を改善することが鍵であると考えられる。

リンゴの着色や糖含量などの果実品質は、生齢期の光環境に影響されることを知られている（Fouché et al., 2010; Heinicke, 1966; Jackson et al., 1977; Robinson et al., 1983; Seeley et al., 1980）。反射マルチは樹冠内の光環境の改善に効果的であり（Doud and Ferree, 1980; Green et al., 1995; Jakopic et al., 2007; Ju et al., 1999; Layne et al., 2002）、国内の生産現場では、着色上向きを目的として収穫の1か月程度前から反射マルチ装置を樹冠下に敷設する技術が一般化している。また、反射マルチによる光環境の改善は、樹体の光合成能力向上が期待されており（Green et al., 1995）、実際、糖含量の上昇効果が確認されている（Moreshet et al., 1975）。しかし、反射マルチがリンゴ果実のAA含量に及ぼす影響については、これまで報告された例は少ない。

これらの結果から、反射マルチによる樹体を取り巻く光環境の改善が、リンゴ「ふじ」果実のAA含量に及ぼす影響を明らかにするとともに、果肉組織のAA含量の増加が貯蔵後の内部褐変の発生を軽減できるか検討した。
1. 材料及び方法
1) 供試樹、試験区の設定及び処理方法
2010 年、りんご研究所内圃場（青森県黒石市）に栽培されている 14 年生の M.9 EMLA に供試した。植栽距離は 4 m × 2 m の南北植え、樹形は準整形形、樹高は約 3 m である。反射マルチ区（以下、反射区）及び無処理区を設け、供試樹は各区 4 棟とした。反射マルチ材はアルミ蒸着フィルム（日立エアーシーアイ、東京）を用い、摘果終了前の 7 月 8 日から収穫日まで樹冠下に敷設した（Photo 4）。適期期の 11 月 5 日に各区の供試樹から結実高約 2 m 以下の果実を収穫し、障害果を除いた中庸な大きさの果実を 0 °C の冷蔵庫で貯蔵した。

2) 相対照度の測定
反射マルチ材の敷設日数、収穫期まで月 1 回程度の頻度で収穫日を対象に 9 ～ 17 時における樹間部の相対照度を測定した。測定は照度計（TR-74U, ティアンドデザイン, 長野）を樹冠上（全天）及び各区の樹間に地上 1 m の高さで南向きに設置し、照度（Ix）を測定した。相対照度は樹冠上の照度に対する樹間の照度の割合として算出した。

3) 適元型 AA 含量の測定
8 月 16 日から収穫日（11 月 5 日）まで、約 20 日間隔で各区から果実の果実 4 枚を採取し、果肉組織を切り分け、直ちに液体窒素で凍結後、-80 °C で保存した。また、貯蔵後も約 1 か月間隔で各区 4 枚をサンプリングした。各サンプルについて、5 g の果実組織を 5 %（w/v）の PVPP を含む 10 ml の 6 %（w/v）トリクロロ酢酸水溶液でホモジナイザーを用いて研磨後、10,000 × g で 10 分間遠心分離して上清を得、さらに濾紙（No. 2, ADVANTEC, 東京）で漉過したものを AA 滅出液とし、適元型 AA 含量の測定は眞川ら（2009）の方法を参考に、AA oxidase を用いた酵素法により、次のように測定した。100 μl の AA 滅出液に 300 μl の 1 mM EDTA を含む 0.2 M リン酸カリウム緩衝液（pH 7.4）を加えて中和し、さらに 599 μl の 1 mM EDTA を含む 0.1 M リン酸カリウム緩衝液（pH 6.0）を加えて混和後、1 μl の 0.1 U AA oxidase (Sigma, USA) を添加し、25 °C で 1 時間反応させ、適元型 AA の酸化に伴う 265 nm における吸光度の減少量を分光光度計（UV-1600, 島津製作所, 京都）により測定した。265 nm における適元型 AA のモル吸光係数は 14 mM⁻¹ cm⁻¹ とした。

4) 収獲果の果実品質調査
11 月 5 日に収穫した各区 40 枚について、果重、着色指数、果肉硬度、可溶性固形物度、渦定酸度及びみつ桃の発生程度を 1 ～ 12 逐次先述通り調査した。果汁反応指数は果実横断面に 5 %（w/v）ソウ素・ヨウ化カリウム水溶液を涂布し、染色面積を青森県りんご生産指導要項（青森県りんご生産指導要項編集委員会、2006）の記載に準じ、5 段階（0, 染色なし; 1, 10 %以下; 2, 20 %程度; 3, 綠管束からやや外側; 4, 果心線まで; 5, ほとんどの表面）で評価した。なお、くがぶ部の着色程度は 3 段階（0, 着色なし; 1, わずかに着色している; 2, くがぶ部の表面の半分程度が着色している; 3, くがぶ部の全部が着色している）で評価した。

5) 吸収ガス障害及び内部褐変の発生調査
11 月 5 日に収穫した果実のうち、各区 36 枚を収穫後直ちに発泡スチロール箱内に密閉し、20 °C の恒温下で 12 日間放置して吸収ガス障害を発生させた。また、貯蔵 6 か月後の 2011 年 5 月 18 日及び貯蔵 7 か月後の 6 月 23 日の出庫直前または出庫後 20 °C 恒温下で 7 日間放置後、各区 32 ～ 43 果について内部褐変の発生を調査した。さらに、吸収ガス障害及び内部褐変の発生調査時に障害果及び健全果の各 4 枚から果肉組織を切断、適元型 AA 含量を前記の通り測定した。

6) 統計解析
統計解析は、アドインソフト EXCEL 統計 ver. 6.0 （エスミ、東京）により行った。果実生育期及び貯蔵後の果肉組織における適元型 AA 含量については、分散分析を行った後、最小有意差 (LSD, p = 0.05) を求め、区間の平均値を比較し、その他の項目については t 検定により区間の平均値を比較した。

2. 結果
1) 樹間の相対照度
収穫日における反射区の樹間地上 1 m の相対照度は、無処理区より 2 倍程度高く推移した（Fig. 13）。この傾向は収穫期まで同様であった（データ略）。

Fig. 13. Effect of reflective plastic mulch on relative illuminance at 1 m above the ground surface between 'Fuji' apple trees on an overcast day.

－26－
2）収穫時の果実品質
反射区の果実は、無処理区の果実に比較して、着色指数、糖度、可溶性固形物濃度及び滴定酸度の値が高かった（Table 9）。一方、果重、果肉硬度、ヨード反応指数及びみつつの発生程度は両区間で差はみられなかった。

3）果実生育期の果肉組織における還元型AA含量の推移
果実生育期の果肉組織における還元型AA含量は、8月16日から9月27日にかけて両区とも増加傾向を示し、区間で差はみられなかった（Fig. 14）。その後、無処理区では収穫日までは一定に推移したが、反射区では10月15日まで増加傾向が続いた。収穫日の11月5日における無処理区の含量は22mg/100gFWであったのに対し、反射区では33mg/100gFWと5割近く高い値を示した。

4）貯蔵後の果肉組織における還元型AA含量の推移
貯蔵後の果肉組織における還元型AA含量は、両区とも貯蔵期間の経過に伴って徐々に低下したが、いずれの時点においても反射区は無処理区より高い水準で推移した（Fig. 15）。

Table 9 Effect of reflective plastic mulch on fruit quality at harvest in 'Fuji' apples.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Fruit weight (g)</th>
<th>Coloring index</th>
<th>Flesh firmness (N)</th>
<th>Soluble solids content (Brix %)</th>
<th>Titratable acidity (%)</th>
<th>Starch pattern index (0-5)</th>
<th>Watercore index (0-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflective plastic mulch</td>
<td>332</td>
<td>3.8</td>
<td>1.6</td>
<td>68.0</td>
<td>13.6</td>
<td>0.402</td>
<td>1.4</td>
</tr>
<tr>
<td>Non-treated</td>
<td>323</td>
<td>3.4</td>
<td>0.2</td>
<td>67.9</td>
<td>12.9</td>
<td>0.370</td>
<td>1.4</td>
</tr>
<tr>
<td>t-test</td>
<td>n.s.</td>
<td>**</td>
<td>**</td>
<td>n.s.</td>
<td>**</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

* Not significant.

* Significantly different at p < 0.01.

Fig. 14. Effect of reflective plastic mulch on ascorbic acid content of flesh tissues during fruit development in ‘Fuji’ apples. Data shown are means ± S.E. (n = 4). Bars indicate LSD (p = 0.05).

Fig. 15. Ascorbic acid content of flesh tissues of ‘Fuji’ apples picked from reflective plastic mulched trees and non-treated trees during storage at 0℃. Data shown are means ± S.E. (n = 4). Bars indicate LSD (p = 0.05).
5）炭酸ガス障害及び内部褐変の発生率
収穫直後に各区の果実を密閉し、炭酸ガス障害を発生させたところ、無処理区の果実では38.9%の発生率であっ
たのに対し、反射区では半数の19.4%で障害の程度も低い
ものが多かった（Table 10）。また、貯蔵6か月後の出
庫直後では、内部褐変の発生は両区ともほとんどみられ
なかったが、出庫後20℃で7日間静置した後に調査し
た結果では、無処理区で12.5%の発生率であったのに対
し、反射区では発生がみられなかった（Table 10）。さ
らに、貯蔵7か月後の無処理区では出庫直後で11.6%、
20℃・7日間静置後で7.3%の発生率を示したのに対し、
反射区ではいずれの時点においても発生がみられなかっ
た。

Table 10 Effect of reflective plastic mulch on the incidence of CO₂-induced browning and internal browning in 'Fuji' apples during storage at 0℃.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CO₂-induced browning (%)</th>
<th>Internal browning (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After 6 month storage</td>
<td>After holding at 20℃ for 7 d</td>
</tr>
<tr>
<td></td>
<td>At removal</td>
<td>After holding at 20℃ for 7 d</td>
</tr>
<tr>
<td>Reflective plastic mulch</td>
<td>19.4</td>
<td>3.1</td>
</tr>
<tr>
<td>Non-treated</td>
<td>38.9</td>
<td>5.1</td>
</tr>
</tbody>
</table>

CO₂-induced browning was induced by sealing up the boxes containing fruit immediately after harvest and holding at 20℃ for 12 d.

6）炭酸ガス障害または内部褐変が発生した果実の果
肉組織（非褐変組織）における還元型AA含量
炭酸ガス障害が発生した果実の果肉組織（非褐変組
織）における還元型AA含量は、0.9 mg /100g FWと健全
果の1.5 mg /100g FWに対し明らかに低い値を示した
（Table 11）。 同様に、内部褐変が発生した果実の果肉
組織（非褐変組織）における還元型AA含量は、1.3 mg
/100g FWと健全果の1.7 mg /100g FWに対し有意に低い
値を示した（Table 11）。

Table 11 Ascorbic acid contents (mg/100g FW) of sound flesh tissues of CO₂-induced browning or internal browning injured 'Fuji' apples.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CO₂-induced browning</th>
<th>Internal browning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injured fruit</td>
<td>0.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Non-injured fruit</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>t-test</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* Significantly different at p < 0.05.

3. 考察
反射マルチによる光環境の改善効果はこれまでも報告されており、特に樹冠の下層側においてその効果は明
確である（Doud and Ferree, 1980; Green et al., 1995; 
Jakopic et al., 2007; Ju et al., 1999; Layne et al., 2002）。
今回、反射マルチにより樹間の相対照度は2倍程度増加
した（Fig. 13）。これは比較的下層側にあたる地上1 m
での結果であるが、中層にあたる地上1.5 mまたはそれ
より上層側では、樹冠外からの日射の影響から、反射資
材による効果は薄まる傾向であった。
反射区では着色（特に果肉部）が向上し、可溶性固
形物濃度及び滴定酸度が増加した（Table 9）。果皮の
アントシアニン生成は直射光により促進されることか
ら（Arakawa et al. 1986）。反射マルチによる下方から
の反射光が着色向上に影響したと考えられた。また、可
溶性固形物濃度が増加した結果は、光環境の改善による
光合成能の向上によるものと考えられる（Green et al., 
1995）。これまで、反射マルチにより糖含量が増加した
とする報告（Moreshet et al., 1975）がある一方で、ほ
とんど影響しなかったとする報告もあり（Andris and Crisosto, 1996; Jakopic et al., 2007; Ju et al., 1999; 
Layne et al., 2002）。これらの報告のいずれも着色向上
効果は認められたものの、糖含量について結果が異なっ
たことは、反射マルチの期間の違いによるものと考えられ
る。前者の報告では、結実後間もない、生育初期から
反射マルチを開始したのに対し、後者からの報告では収穫
の約1,2か月前から開始しており,期間が短い。7月上旬（収穫4か月前）から反射マルチを開始した本果実を含めて考慮すると,反射マルチによる穂型の増加は,着色向上に要する期間よりも長くするマルチが必要であると推察された。また,リノゲ酸の生成は,主にクエン酸回路において行われることから,反射マルチにより穂型変化が増加した結果は,穂型の増加に伴って生じたものと考えられた。

収穫時における果肉組織のAA含量は,無処理区よりも反射区で高かったことから,樹体を取り巻く光環境の改善は,果肉組織のAA含量を増加させることが示された（Fig. 14）。最近,光の透過性が低い防藻塗料の下で栽培されたリノゲ果実でAA含量が低下したと報告されており（Solomakhin and Blanke, 2010）,光環境がリノゲ果実のAA含量に及ぼす影響は大きいと考えられた。

果肉組織はAAの生合成能を有していない（Davey et al., 2004）, また, 有効にも成果果ではその能が低い（Li et al., 2008）といった報告を考慮すると,反射区のAA含量が収穫の3週間前以降無処理区を上回った結果（Fig. 14）は,果肉組織における生合成が活性化したことによるものとは考えづらく,また,果実の穂型量の増加（Table 9）が関与した可能性も低いと考えられる。このことから,光環境の改善が果肉組織のAA含量の増加は,主にソーセージ管の果実からの輸送増加によるものと推察された。

Yabuta et al.（2007）は,光照射によるシロイヌナナス果実でのAA生合成の節は,光合成における電子伝達系に依存することを示唆した。一方, Bartoli et al.（2006）は,呼吸状態における電子伝達系が関与すると報告している。反射マルチによる光環境の改善は,リノゲの枝葉の光合成だけでなく,呼吸も促進したことから（Green et al., 1995）, 光照射によるAA生成は,光合成及び（または）呼吸における電子伝達系の活性化が関与したと推察された。また, リノゲ果実のAA含量の維持には,還元酵素のDHAR及びMDAR活性が重要である（Li et al., 2010）。光照射はこれらを活性化させることができるシロイヌナナスで確認されている（Bartoli et al., 2006）。これらのことから, リノゲ果実の光照射は, AAの生合成と維持機能向上をさわった可能性が考えられた。

反射区の果肉組織のAA含量は収穫期に近づくにつれ増加した（Fig. 14）。しかし, 収穫期の老化したリノゲ果実のAA生合成能は, それ以前の成熟した果より低下することが報告されている（Li et al., 2010）。ことから,光環境の改善によるAA生成能の活性化は, 収穫期後の老熟果ではなく, 主にそれ以前の成熟した果で起きるのだと考えるのが自然であり, その結果が果肉組織のAA含量の増加として現れるまでのには, 一定の時間を要するものの想像される。もしこうであれば, 穂型量について先述したように, 反射マルチを開始する時期によっては, 果肉組織のAA含量に影響しない可能性も考えられることから, 今後この点について明らかにする必要があると考えられた。

'ふじ'の収穫直後に高濃度のCO₂を処理することにより確認される炭酸ガス障害の発生率は, 長期間貯蔵した後に確認される内部褐変の発生率と正の相関関係を示すことが知られており（Volz et al., 1998a）, 両障害とも発生に関与する要素は類似するものと考えられる。今回, 炭酸ガス障害及び内部褐変の, 反射区の発生率は無処理区を下回った(Table 10)。また, 果肉組織のAA含量は, 両区とも冷蔵後に低下したが, 反射区はいずれの時点でにおいても無処理区より高く推移した（Fig. 15）。さらに, 炭酸ガス障害または内部褐変を発生した果実の果肉組織（非褐変組織）は, 健全な果肉組織よりも還元型AA含量が低かった（Table 11）。これまで, 貯蔵前の果肉発生と果肉組織におけるAA含量の低下との関連を示す報告は多いが（De Castro et al., 2008; Frank et al., 2003; Pinto et al., 2001）, 前章を含め, 本結果をそれを強く支持するものであり, 果肉組織のAA含量の増加により貯蔵後の果肉褐変の発生を抑制することができた。なお, 反射マルチにより, 貯蔵やげなどの果皮障害が増加する傾向はみられなかった。

以上から, 反射マルチによる樹体を取り巻く光環境の改善は, リノゲ'ふじ'果実の果肉組織におけるAA含量を増加させることができ, このことによって貯蔵後の内部褐変の発生を抑制できることが明らかとなった。

4. 摘 要
反射マルチにより, 樹高地上1mの相対照度は2倍程度増加した。これに伴い, 反射マルチ区（反射区）では収穫時の着色が向上し, 可溶性固形物濃度及び糖代謝が増加した。また, 反射区の果肉組織の還元型AA含量は, 10月以降, 収穫期にかけて無処理区を上回ったことから, 反射マルチによる光環境の改善は, 果肉組織のAA含量を増加させることができた。貯蔵後の果肉組織の還元型AA含量は, 両区とも徐々に低下したが, 反射区ではいずれの時点においても無処理区より高く推移した。さらに, 反射区の炭酸ガス障害及び内部褐変の発生率は, いずれの調査時点においても無処理区を下回った。

以上から, 反射マルチによる光環境の改善は, リノゲ'ふじ'果実の果肉組織におけるAA含量を増加させることができ可能性があり, 貯蔵後の内部褐変の発生を抑制できることが明らかとなった。
Ⅵ 総合考察

「ふじ」は国内のリンゴ生産量の過半数を占めることから、品質的な欠陥が生じた場合、リンゴ産業全体に及ぼす影響は非常に大きい。特に、生育期に発生するこの病害と長期貯蔵後に発生する内部褐変は、年により多発し問題となる。これらの果実障害は貯蔵期間を短縮させる制限要因となり、多大な経済的損失をもたらすことから、リンゴ産業全体から対策が求められている喫緊の課題である。しかしながら、これらの果実障害の発生を抑制する対策は確かな発見が見られないとしている。そこで、本研究ではリンゴ「ふじ」に発生するこの病害を対策の発見及び発症抑制の開発を目的とした。

1. こうあ部黴果の発生機構及び発生抑制
こうあ部黴果を生じた果実は外観的劣れる、貯蔵中に腐敗しやすいことから、商品価値を著しく低下する。こうあ部黴果の初期症状である内部黴果は、果実肥大盛期にあたる満期90〜120日後頃に発生し、この時期の肥大が大きい果実は発黴しやすくなることが確認されている（葛西, 2006）。また、「ふじ」のこうあ部黴果と発生の様相が類似した「ガラベ」では、高密度の毒素により黴果の発生率が高まったとの報告がある（Opara et al., 2000）。このことから、水分の取り込みによる細胞伸長が初期症状の内部黴果を誘発すると予想される。

エクスパンションは引張応力を受ける状況下で細胞が伸長する際の細胞壁の伸縮性を高める働きを持つ細胞壁タンパクである（McQueen-Mason et al., 1992; McQueen-Manson and Cosgrove, 1995; Cosgrove, 2000）。リンゴでは6つのエクスパンション遺伝子が単離されているが、その中でもMdEXP3は、主に果実肥大期に誘導されることと、果実肥大に関連するエクスパンション遺伝子の発現パターンを解析することにより、リンゴの黴果発生機構を解明する上で助かると推測される。そこで、Ⅱでは、果実肥大期の果実におけるリンゴエクスパンション遺伝子MdEXP3の発現パターンを解析した。その結果、果実肥大におけるMdEXP3の発現パターンが、果肉組織と果皮組織では異なることが明らかとなった。内部黴果は主に果皮組織でのMdEXP3のmRNA発現量が果肉組織での発現量を下回る時期に発生すると考えられた。この発現量の差異は細胞伸長の要因であると解釈された。また、被黴果は果皮組織においてMdEXP3のmRNA発現を抑制した結果は、この解釈を裏付けるものである。

この結果から、果実肥大を抑制することが発症抑制技術の開発の鍵になると考えられた。しかし、果実肥大に影響する要素は複雑であり容易ではない。果実への被黴果処理はこうあ部黴果の発生を抑制したが、「ふじ」の栽培面積の過半数は無黴栽培であり、食味やコストも考慮すると、実際的な対策には至らなかった。藤原ら（2005）は不織布シートマルチによる黴果発生抑制効果を示唆したが、現状ではコスト的に見合わないことから、より現実的でない。一般に、栽培面積の対策は栽培条件が異なる園地間で効果が安定しにくい、そこで、汎用性のある植物生産調節剤を利用した発症抑制技術の開発に取り組む必要があった。

NAAはウットウ（Bullock, 1952; Yamamoto et al., 1992）やライチ（Huang et al., 2003）で黴果発生抑制効果が報告されている。「ふじ」について予備試験を実施した結果、果実細胞分化期にあたる満期後1か月間でNAAを14.7 ppmで1週間処理することにより、こうあ部黴果の発生を抑制できる可能性を示した。そこで、Ⅲ-1では、NAA処理による「ふじ」のこうあ部黴果発生抑制効果を詳細に検討した。その結果、満期3または4週間後におけるNAA 14.7 ppmの1週間処理により、果実質品や新たな開発による影響を及ぼすことなく、こうあ部黴果の発生を抑制できることを明らかにした。本結果は、植物生育調節剤による「ふじ」のこうあ黴果発生抑制効果を示す初めての報告であり、意義深い。本技術は生産現場での汎用性のある実用的な対策として期待できるものである。

NAAを処理した果実はCell number indexの値が処理しない果実よりも低い傾向を示したことから、果実細胞分化期のNAA処理は一時的な生長抑制作用を引き起こし、細胞分裂を抑制した可能性が示唆された。細胞数の減少は、果実肥大盛期の果実肥大を低下させることに関与し、黴果発生抑制効果をもたらしたと考えられた。しかし、この推測にはあてはまらない場合もあり、作用機構についてはさらなる検討が必要と考えられた。

Ⅲ-2では、「ふじ」のこうあ黴果発生抑制を目的としてNAAを処理した場合、事前に処理したNACの摘果効果を低下させると、石灰硫黄合剤（LS）の摘花（果）効果には影響しないことを明らかにした。また、LSと併用した場合でもNAAによる明らかな黴果発生抑制効果が認められ、果実への影響もみられなかったことから、摘果作業の省力化を図る上では、LSとの併用が実用的であると考えられた。青森県内のリンゴ園における摘果剤（現在、国内で農薬登録されている摘果剤はNACのみである）の使用実施面積の比率は10%程度である一方、LSなどの摘花剤の使用実施面積の比率は1%未満と少ない（青森県りんご生産指導要項編集部, 2012b）。摘果剤の処理時期
が結実後であるのに対し，摘花剤の処理時期は開花期であ
るため，結実率や収穫量に不安を懸念する理由がある．
こうたる摘花抑制を目的としたAAの利用をより効果的につなぐためには，同時
に，摘花剤を利用することを推奨する必要がある．

２．内部褐変の発生機構及び発生抑制

青森県産'ふじ'は，年間出荷量のうち４月以降の長期貯
果実が３割程度を占める．内部褐変は高コストの長期
貯果実で発生することから，多発した場合の経済的
損失は大きい．これまで，内部褐変の発生には，アセト
アルデヒドやエタノールなどの揮発性物質が関与すると
という報告がある（Smagula et al., 1986；Argenta et al.,
2002a；2002b），これらは直接的な原因でないとする報告
もあり（Smagula and Bramlage, 1977；Volz et al., 1998b；
Fernández-Trujillo and et al., 2001），発生機構は明らかで
なく，対策の確立に及んでいない．そこで，IVでは，内部
褐変の発生機構の解明を目的とした．

IV-１において，内部褐変の褐変現象は酵素的褐変に
するものと推察され，その前段階にROS由来の生体膜
へのダメージが生じることが考えられる．また，みつ
は内部褐変の発生を助長することが知られている．これ
らを背景として，IV-２では，みつ組織と非みつ組織間
で，H2O2含量，AA含量及びAA-GSH cycleに関連する
酵素活性を比較することにより，みつが果肉褐変の発生
及びその影響を解明する目的とした．その結果，みつが
果肉褐変を誘
発する機構につれて，Fig. 12に示す仮説を提案した．す
なわち，みつ組織の細胞は種子のH2O2・高CO2濃度下にあり，
ミドコンドリア内膜上の電子伝達系におけるTerminal oxidaseの活性が抑制されるで
してROSの生成が促進される．著者らは，レドックスシナプトとしてAPX遺
伝子の発現をみると，APX活性が高まることでAAが消
費される，みつは収穫直後から樹上で発生することはた
る，収穫前の樹上で発生することから，収穫の時点でAA含量が低い状態にある．その上，DHAR
活性は貯蔵後にお低下するため，AAの消耗を抑えるには十分でなく，みつ組織の抗酸化レベルは低下する．最終
的に，増加したROSにより生体膜がダメージを受け，フェ
ノール物質が酵素的に酸化され，後に果肉褐変の症状と
して現れる．この結果，酸化ストレス制御機構がみつの
内部褐変の発生に強く関連することを示唆した意義深い
成果である．

この結果から内部褐変の発生には貯蔵後の果肉組織
におけるAA含量の低下が関与すると考えられた．つま
まり，内部褐変の発生を抑制するためには，収穫の段階で
果肉組織のAA含量を高くおく必要があると考えられ
た．AA生合成は，光照射により活性化されることが知ら
れている（Bartoli et al., 2006；Yabuta et al., 2007）．ま
た，Davey et al. (2004) によると，リンゴの葉はAAを
生合成できるが，果肉組織ではその能力がないとし，果
肉組織でのAAの蓄積は葉からの輸送に依存していると推
察されている．一方，Li et al. (2008) は，果肉組織は
AAを生合成する能力を有するとした上で，陽面の果肉
組織ではAAの生合成は活性化しなかったと報告してい
る．これらの報告を参照すると，リンゴにおけるAA生合
成はソース器官である葉への光照射が重要であり，樹体
を取り巻く光環境を改善することが鍵であると考えられ
た．そこで，Vでは，反射マルチを利用して樹体を取り
巻く光環境を改善することが果肉組織のAA含量に及ぼ
す影響を明らかにすることを目的として，その結果，反
射マルチによる光環境の改善は，'ふじ'果実の果肉組織
におけるAA含量を増加させることができが可能であり，貯蔵後
の内部褐変の発生を抑制できることが明らかとなった．
これまで，'ふじ'の内部褐変の発生抑制を目的とした貯蔵
管理に関する報告はいくつかあるが（Argenta et al.,
2000；2002a；Chung et al., 2005；Volz et al., 1998a），
本研究は生産技術による'ふじ'の内部褐変の発生抑制を試みた
最初の報告であり，今後新たな視点に立った技術開発も
期待できる．

３．今後の展開

本研究における'ふじ'のこうあ果実抑制に関する成果
を考案し，各研究機関による農業登録のための適用性
試験を経て，2010年４月にNAAを含む植物生育調節剤が
リンゴのこうあ果実発生抑制を目的として登録され，
実用化に至った（商品名：ヒオモソ水溶剤，登録番号：
22930）．本技術が生産現場で広く活用されるものと期待
する．

'ふじ'は育種親として利用される場合が多いが，'北
斗'，'秋授'，'新世紀'，'あおり21'（昭和21）などといった
'ふじ'の後代品種は，こうあ果実を生じる特性を持つ．
また，'ふじ'の早熟系変わりである早生ふじもやはり同
様である．この特性は遺伝的な形質であると考えられ
るが，将来も問題であることが予想される．今後，'ふじ'以
外の品種において本技術が適用できるか確認する必要が
ある．また，NAA処理による果実抑制は，細胞分裂抑制
作用による細胞数の減少に由来した果実肥大の低下
が関与した可能性が示唆されたが，作用機構については
未確定の部分があることから，さらなる検討を要する．

本研究により，樹体を取り巻く光環境の改善が，貯蔵
後の内部褐変の発生を抑制できることが明らかとなっ
た．光環境の改善は樹の仕立て法や枝葉剪定による受光
体形の改善が前提となるが，光を積極的に取り込み，利
用する技術開発も重要である．本研究では反射マルチ資
材として一般的に使用されているアリス蒸着フィルムを
用いたが，コスト面や作業性の低下，敷設時や始末時の
労動も考慮するうちか有用性に欠ける。近年、Kaolin を
含む散布型の反射麻痺を利用した反射マルチの有利性が
報告されていることに（Glenn and Puterka, 2007）
このような観点も検討する必要がある。また、果
肉組織のおよびAA含有量の増加に及ぼす反射マルチの有効
な増収期間を明確にする必要がある。その一方で、リン
ゴ樹におけるAAの生成量と果実への寄穫機構については
未解決部分が多く、さらなる研究の進展が待たれる。

1-methylocyclopentane (1-MCP) は、園芸作物の期
的な品質保持剤として、近年、世界的に利用されている
（Watkins, 2008）。日本では、2010年11月に登録され
（商品名：スマートフレッシュくん蒸剤，登録番号：
22804）。今後、国内リンゴ産業においても主要な貯蔵技
術として発展すると思われる。しかしながら、成熟が進
んだり果実に1-MCPを処理した場合、内部褐変の発生
リスクが高まることが明らかとなった（長内ら, 2006）。
今後とも処理の内部褐変に対する配慮を欠くことはで
きないように想定される。

以上、本研究により、リンゴふじのこの効果果及び
内部褐変の発生抑制及び発生抑制に関する意義深い研究
成果が得られた。本研究がふじの安定生産及び安定供給
のための技術改良に寄与し、リンゴ産業のさらなる発展
に貢献できることを確信する。

Ⅶ 総合摘要

リンゴふじの生育期に発生する果肉褐変と長期貯
蔵後の発生する内部褐変は、リンゴ産業全体に多大的経
済的損失をもたらし問題となる。しかし、これらの果実
障害の発生を抑制する対策は確実、発生機構も明らかに
されていない。そこで、本研究では、リンゴふじに発生
するこの内部褐変と内部褐変の発生機構の解明及び発生
抑制技術の開発を目指した。

果実熟大前期におけるリンゴエクスパンション遺伝子
MdEXPA3のRNA量を解析した結果、果肉組
織と果皮組織では発現パターンが異なることが明らか
となった。内部褐変は主に果皮組織でのMdEXPA3の
mRNA発現量が果肉組織での発現量を下回る時期に発
生したことから、果実肥大盛期における細胞伸張の不均
衡が微細な果実発生の引き金となり、内部褐変の発生に
至ったと考えられた。また、被殺処理は果皮組織におけ
るMdEXPA3のRNA量の蓄積を抑制し、内部褐変の発生を
抑制した。

この果肉褐変に対する汎用のある対策として、植物
生育調節剤を利用した技術開発に取り組んだ。NAA処
理による検討をした結果、高濃度の4回処理により、果実成長が抑制されることが明らかになった。NAA処
理による成長抑制は、細胞数の減少に由来した果実肥大盛
期における果実肥大の低下が関与する可能性が考えられ
た。さらに、本溶液の有効性を想定した摘果（L）剤
との相互関係について検討した結果、摘果発生抑制を目
的としてNAAを処理する場合、NACの摘果効果を低下さ
せるが、石灰硫黄剤（LS）の摘果（L）剤効果には影響
しないことが明らかとなった。また、LSと併用した場合
でもNAAによる明らかな摘果発生抑制効果が認められた
ことから、LSとの併用が実用的であると考えられた。

内部褐変の褐変現象は、酵素的褐変によるものと推察
されたことから、その前段階に活性酸素種による生体膜
へのダメージが生じた可能性が考えられた。そこで、酸
化ストレス制御機構の面から発生機構を解明することを
検討した。MdEXPA3のH_{2}O_{2}含有量は、収穫時及び貯蔵後の
いずれの時点においても非みつ組織を上回った。また、
みつ組織のアスコルビン酸（AA）含有量は、収穫時点で
非みつ組織よりも低く、貯蔵後の含有量が同組織ともに減
少したが、みつ組織では非みつ組織よりも1月前後の貯
蔵3か月後に非みつ組織のAPX活性は、収穫時及び貯蔵後のいずれの時点においても非みつ組織
よりも高く推移した。また、APX活性が両組織間で差
はなく、貯蔵期間の経過に伴い低下した。これらのことは、みつ組織の低O_{2}・高CO_{2}濃度のストレス下におい
て、細胞内でH_{2}O_{2}の生成が増大し、それがレドックスシ
グナルとなってAPX活性を高める一方、貯蔵期間の経過
に伴って活性が低下したDHARによる還元作用が十分に
機能せず、AAが消耗し、抗酸化レベルが低下したと推察
された。

内部褐変の発生には貯蔵後の果肉組織におけるAA含量
の低下が関与すると考えられた。そこで、反射マルチを
利用し、摘果を取り巻く光環境を改善することでAA含量
を高め、内部褐変の発生を抑制できるか検討した。反射
マルチ区（反射区）の果肉組織におけるAA含有量は、無処
理区を上回ったことから、反射マルチによる光環境の改
善は、果肉組織のAA含有量を増加させることが示された。
貯蔵後の果肉組織のAA含有量は、両区とも徐々に低下した
が、反射区ではいずれの時点においても無処理区より高
く推移した。さらに、反射区の炭酸ガス障害及び内部褐
変の発生率は、いずれの調査時点においても無処理区を
下回った。これらのことから、反射マルチによる光環境
の改善は、果肉組織におけるAA含有量を増加させることができ、貯蔵後の内部褐変の発生を抑制できること
が明らかとなった。


Cosgrove, D. J. 1997. Relaxation in a high-stress environment: the molecular bases of extensible cell walls and...


樋渕康範・飯島悟子. 1999. リンゴの果肉抽出物のポリフェノール組成と抗酸化活性. 日本食品工学科学会誌. 46: 645-


Load, W. J. and R. A. Damon. 1966. Internal breakdown development in water-cored delicious apples during...


Studies of the Developmental Mechanisms and Control Technologies of Fruit Cracking and Internal Browning in ‘Fuji’ Apples

Satoshi Kasai

Keywords : apple, ‘Fuji’, fruit cracking, expansin, NAA, internal browning, ascorbate-glutathione cycle, light environment

Summary

‘Fuji’ is the most important apple cultivar in Japan. However, pre- or post-harvest physiological disorders such as fruit cracking in the stem cavity or flesh browning disorder, generally referred to as internal browning, may occur and cause considerable economic loss. At present, the developmental mechanisms of these disorders remain unclear and effective control technologies have not yet been developed. In this study, I tried to clarify these developmental mechanisms and to come up with effective control technologies.

I analyzed the relationship between fruit cracking and the expression of an apple expansin gene (MdEXPA3) in the pericarp and flesh during fruit growth. Internal ring-cracking, an early symptom of fruit cracking, begins to occur just before the increase of MdEXPA3 transcript levels in the pericarp. Therefore, despite the very high level of MdEXPA3 in the flesh, the differential expression in the pericarp and flesh may be related to this initiation of cracking. Bagging, however, reduced the incidence of fruit cracking and inducedMdEXPA3 expression at an earlier stage in the pericarp, but not in the flesh. These results suggest that the induced accumulation of MdEXPA3 mRNA in the pericarp reduced the susceptibility to fruit cracking. Moreover, early symptoms of fruit cracking coincide with situations in which MdEXPA3 expression in the flesh exceeds that in the pericarp. In such situations, pericarp cells may be unable to keep up with the expansion of flesh cells due to insufficient levels of the growth promoting expansins.

A three-year series of experiments confirmed that a single application of 14.7 ppm of NAA to ‘Fuji’ apple trees during the stage of fruit cell division reduced fruit cracking. When NAA was applied three or four weeks after full bloom, fruit cracking was reduced in each of the three years without adverse influence on either fruit quality or shoot elongation. These results suggest that when NAA is applied during the stage of fruit cell division, a reduction of cell numbers occurs, resulting in a decline in growth during the stage of rapid fruit growth and a subsequent reduction in fruit cracking. In addition, it was observed that NAA application for fruit cracking reduction inhibited the fruit thinning effect of carbaryl (NAC). On the other hand, NAA did not inhibit the effect of lime sulfur (LS) even while reducing fruit cracking. This suggests that LS is better than NAC when used in combination with NAA to promote fruit thinning and reduce fruit cracking in ‘Fuji’ apples.

Water core usually spreads in mature ‘Fuji’ apples and may induce flesh browning during storage. The mechanism that causes this browning is unknown. I analyzed H2O2 and ascorbic acid (AA) contents and the activities of four enzymes involved in the AA-glutathione (AA-GSH) cycle in water core and water core-free tissues in ‘Fuji’ apple fruit during storage. H2O2 levels always were higher in water core than in water core-free tissues. AA levels were lower in water core tissues at harvest and decreased in both tissue types during the storage period. However, AA was completely absent from water core tissue but not from water core-free tissue three months after harvest. Ascorbate peroxidase (APX) activity was always higher in water core than in water core-free tissues, and the activity of dehydroascorbate reductase (DHAR) decreased continuously after harvest in both tissue types. These results suggest higher production of H2O2 caused by anaerobic conditions in water core activated APX, which acted as a redox signal. The concomitant net consumption of AA was not balanced by a decline in DHAR activity, leading to decreased
antioxidant levels.

Since it has been thought that a decline of AA levels in flesh tissues during storage might be related to the incidence of flesh browning disorders, I tried to stimulate the accumulation of AA in flesh tissue by improving the light environment of the tree canopy with reflective plastic mulch. AA levels in the flesh tissues of mulched fruit were higher than those of non-treated fruit at harvest as well as during storage. Moreover, the incidence of internal browning and CO₂ induced browning in individual mulched fruit were lower than that in non-treated fruit. These results suggest that reflective plastic mulch is effective in stimulating the accumulation of AA in flesh tissues and can help to reduce the incidence of flesh browning disorder in 'Fuji' apples.
Photo 1 Fruit cracking in the stem cavity in 'Fuji' apples. Internal ring-cracking (IRC, upper) and Stem-end splitting (SES, lower).
Photo 2 Internal browning; flesh browning disorder during storage in ‘Fuji’ apples.
Photo 3 NAA application at three or four weeks after full bloom suppressed dropping of 'Fuji' apples with empty seed (arrow).
Photo 4 Reflective plastic mulch. Reflective plastic films were laid on the ground beneath ‘Fuji’ trees from July 8 to November 5 (harvest date).