慢性低Mg血症(Chronic Hypomagnesemia)における乳牛の骨粗鬆症発生メカニズム（1）

<table>
<thead>
<tr>
<th>誌名</th>
<th>畜産の研究 = Animal-husbandry</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSN</td>
<td>00093874</td>
</tr>
<tr>
<td>巻/号</td>
<td>679</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 929-934</td>
</tr>
<tr>
<td>発行年月</td>
<td>2013年9月</td>
</tr>
</tbody>
</table>
慢性低 Mg 血症（Chronic Hypomagnesemia）における
乳牛の骨粗鬆症発生メカニズム（1）

吉田繁*

は じ め に

乳牛体内での Ca と Mg の分布

乳牛体内における Ca と Mg の分布を考えると，
Ca は主に骨髄に，Mg は骨髄・骨格筋・赤血球など
に広く分布しているし，また ATP などの高エネルギー
酵素の関与する酵素系でも補酵素として重要
な役割を果たしている。骨は Ca アパタイトを構成
（Hydroxyapatite） [Ca₃(PO₄)₂] • MgO • 3(PO₄) • 6H₂O [Neuman and Neuman, 1958] で
あり，モル比で Ca33：Mg1，重量比で Ca55：Mg1 で
分布している。

体重 650kg の乳牛のうち骨は約 64kg で 8500
グラムの Ca と 160 グラムの Mg を含んでいる（表 1）。
骨格筋は約 250kg で Ca10 グラムに対し Mg 47 グラ
ム，血液は約 26リットルとして Ca1.7 グラムと
Mg 0.58 グラムである。大略 8500 グラムの Ca と 200
グラムの Mg になる。ここで著者の測定（表 3）によ
ると全血（Whole blood）では Ca 6.69mg/dl
(3.34mEq)：Mg 2.25mg/dl (1.85mEq)，血清（Blood
serum）では Ca 8.49mg/dl (4.24mEq)：Mg 2.43mg/dl
(2.00mEq) である。これに対して牛乳は 1 リット
ル中に Ca 1 グラムと Mg 0.1 グラム含まれているの
で，乳牛が一日に 30 リットルの牛乳を生産すると
Ca 30 グラムと Mg 3 グラム，年間 9150 グラムの Ca
と 915 グラムの Mg を牛乳として体外に排出させて
いる。乳牛は通常每年一頭の仔牛を分娩するのでそ
の Ca と Mg を加えなければならない。さらに生後
20〜22 カ月で種付けをするときにはその牛自身の
成長が必要になってくる。乳牛にとっては過酷な条
件であり年齢は自分の体内に保有する Ca 量以上，
Mg に至っては体内の Mg 量の 4 倍を体外に排出さ
せている計算になり，ターンオーバー数は Ca は 110，
Mg は 450 以上になる。乳牛がグラステタニー
(Grass tetany) に陥ると血清 Mg 値が 2.43mg/dl

(2mEq) から 1mg/dl (0.9mEq) 以下に低下すると全
身の血清 13 リットル中ではわずか 180mg の低下に
しか過ぎない。また乳牛が乳熱（Milk fever）に陥る
と血清 Ca 値が 8.5mg/dl (4.24mEq) から 4.0mg/dl
(2mEq) 前後に半減するので全身の血清 13 リットル
の中わずか 520mg の低下である。このような Ca や
Mg 急激な低下が，ある日突然乳牛が倒れるような
症状の急変が発生する前に何かの慢性あるいは
亜急性の疾病あるいは症状が発生していないのか
という問題がある。

低 酸 度 二 等 乳 の 集 団 発 生

第二次世界大戦のあとオランダで低酸度二等乳
の集団発生がみられ，その現象は “the Utrecht
abnormality of Milk” として知られている。その時
乳牛はアルコール試験で凝固し，加熱，ときには輸送
中にさえも凝固したといわれている。その牛乳は脂肪
やタンパク質などの一般組成には変動が見られな
かったが，ただ乳牛中のイオン状 Caのみが増加し
ていた（Seekles & Smeets, 1947）（Boogardt, 1954）。

しかし世界大戦の後その現象は消えてしまった。
日本でも低酸度二等乳はしばしば発生しているが，
発生状況は一戸の牧場でごく少数の乳牛にみられる
など散発的でありその集団発生は報告例が少ない。
広島大学付属牧場で発生した例では 表 2 に示したや
うに，約 20頭の全ての搾乳牛がアルコール試験陽性，
そのあるものは加熱試験に凝固した。大学の付属牧
場でもあり，その乳と血液の分析を続けた結果，表
3 で示したように血液中の全血 Ca 値が高く全血

*広島大学名誉教授（Shigeru Yoshida）
表 2 広島大学付属牧場の乳牛の血液と乳の分析結果

<table>
<thead>
<tr>
<th>Cow NO</th>
<th>NO of calvings</th>
<th>Al-test</th>
<th>H-test</th>
<th>Ca (mEq)</th>
<th>Mg (mEq)</th>
<th>Pi (mg/dl)</th>
<th>Al (mg/dl)</th>
<th>Gl (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>+</td>
<td>++</td>
<td>4.21</td>
<td>1.39</td>
<td>8.52</td>
<td>2.87</td>
<td>6.48</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>+</td>
<td>++++</td>
<td>3.84</td>
<td>1.62</td>
<td>7.50</td>
<td>2.25</td>
<td>7.61</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>+</td>
<td>++++</td>
<td>3.27</td>
<td>1.57</td>
<td>6.00</td>
<td>1.45</td>
<td>10.39</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>±</td>
<td>+</td>
<td>3.52</td>
<td>2.02</td>
<td>9.50</td>
<td>2.51</td>
<td>4.63</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>+</td>
<td>+</td>
<td>3.68</td>
<td>1.74</td>
<td>7.42</td>
<td>2.97</td>
<td>5.77</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>+</td>
<td>+</td>
<td>3.49</td>
<td>1.51</td>
<td>7.23</td>
<td>2.97</td>
<td>9.69</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>+</td>
<td>++++</td>
<td>4.25</td>
<td>1.97</td>
<td>7.40</td>
<td>3.65</td>
<td>4.72</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>++</td>
<td>+</td>
<td>4.08</td>
<td>1.77</td>
<td>6.73</td>
<td>3.20</td>
<td>3.37</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>++</td>
<td>±</td>
<td>4.28</td>
<td>1.66</td>
<td>6.66</td>
<td>3.19</td>
<td>4.39</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>++++</td>
<td>±</td>
<td>4.22</td>
<td>1.46</td>
<td>6.38</td>
<td>2.76</td>
<td>5.30</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>++</td>
<td>±</td>
<td>4.20</td>
<td>1.79</td>
<td>5.65</td>
<td>3.03</td>
<td>5.34</td>
</tr>
<tr>
<td>12</td>
<td>5*1</td>
<td>++++</td>
<td>+</td>
<td>3.70</td>
<td>1.68</td>
<td>6.98</td>
<td>3.29</td>
<td>5.42</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>++</td>
<td>±</td>
<td>4.35</td>
<td>1.85</td>
<td>8.50</td>
<td>3.01</td>
<td>4.98</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>++++</td>
<td>±</td>
<td>4.32</td>
<td>1.99</td>
<td>9.10</td>
<td>3.40</td>
<td>4.93</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>++++</td>
<td>±</td>
<td>3.83</td>
<td>1.64</td>
<td>6.38</td>
<td>3.35</td>
<td>4.61</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>++++</td>
<td>±</td>
<td>4.25</td>
<td>1.78</td>
<td>7.84</td>
<td>2.80</td>
<td>6.42</td>
</tr>
<tr>
<td>17</td>
<td>2*1</td>
<td>++++</td>
<td>+</td>
<td>4.08</td>
<td>1.84</td>
<td>6.67</td>
<td>3.29</td>
<td>5.48</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>++++</td>
<td>+</td>
<td>4.06</td>
<td>1.97</td>
<td>6.27</td>
<td>3.65</td>
<td>4.27</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>++++</td>
<td>+</td>
<td>4.06</td>
<td>1.81</td>
<td>6.36</td>
<td>3.01</td>
<td>4.37</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>++++</td>
<td>±</td>
<td>4.63</td>
<td>1.83</td>
<td>5.28</td>
<td>3.47</td>
<td>4.75</td>
</tr>
<tr>
<td>21</td>
<td>2*1</td>
<td>++</td>
<td>±</td>
<td>4.69</td>
<td>1.82</td>
<td>7.13</td>
<td>3.46</td>
<td>3.84</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>++</td>
<td>+</td>
<td>4.51</td>
<td>1.97</td>
<td>6.38</td>
<td>3.76</td>
<td>4.36</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>++++</td>
<td>+</td>
<td>4.63</td>
<td>1.84</td>
<td>6.80</td>
<td>2.82</td>
<td>4.28</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>++++</td>
<td>+</td>
<td>4.60</td>
<td>1.67</td>
<td>7.80</td>
<td>3.57</td>
<td>4.26</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>++++</td>
<td>+</td>
<td>4.69</td>
<td>1.92</td>
<td>6.68</td>
<td>3.57</td>
<td>4.05</td>
</tr>
<tr>
<td>Av</td>
<td></td>
<td></td>
<td></td>
<td>4.14</td>
<td>1.76</td>
<td>7.09</td>
<td>3.09</td>
<td>5.29</td>
</tr>
</tbody>
</table>

*: 血液を含む。Al-test : Alcohol test, H-test : Heating-test : 100℃, 30 min。

表 3 全血とその血液中の Ca と Mg

<table>
<thead>
<tr>
<th>NO of Cows</th>
<th>WB Ca (mEq)</th>
<th>BS Ca (mEq)</th>
<th>WB Mg (mEq)</th>
<th>BS Mg (mEq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>54</td>
<td>3.34</td>
<td>4.24</td>
<td>1.85</td>
</tr>
<tr>
<td>Abnormals*1</td>
<td>17</td>
<td>3.82</td>
<td>4.49</td>
<td>1.82</td>
</tr>
</tbody>
</table>

*: 広島大学付属牧場の泌乳中の乳牛

Mg 値がやや低いか、血清 Mg 値がやや低いか傾向を示した。乳牛は外見上では全く異常は認められず、ただ起立不能症、流産、死産、早産、後産停滞が多発する傾向が見られた。その他の疾病は ケトーシスが多発した。牛乳は原料乳として近隣の集乳場に出荷されたがアルコール試験陽性のため日本農林規格で二等乳として取り扱われた。さらに高齢牛など淘汰された乳牛は食肉業者に卸売され、食肉検査官の検査を受けたのち肉用牛として福山市営の屠殺場で処理された。各柔組織と下顎骨などは屠殺場で採取できなかったが、他の頭骨・尾・四肢端・皮など以外は皮肉として食肉業者に売り渡されたので屠殺場での採取は困難である。
不適切な粗飼料が Mg 不足をもたらし
グラステナーの原因となる

乳牛のグラステナー（Grass tetany）は発病時に血清 Mg が低下しているので低 Mg 性（Hypomagnesemia）ともいわれ、その発病原因は粗飼料中の Mg の不足、言い換えれば Mg 欠乏症として知られている（A. Voisin, 1963）。すなわち、ヨーロッパでは春先の牧草の乾燥期にミケラルの少ないグラスを摂取するときに多発し、このとき急激な気温の低下などに関係しているといわれている。症状としては痙攣や神経症状を伴った低起立不能症である。これに対して低 Ca 血症である乳熱（Milk fever）は主に分娩後の一週間以内に多発する産後の低起立不能症であるのでに対して、グラステナーは必ずしも分娩直後に多発するといえず、分娩後 4 週までは 39%、5-12 週は 38%、13 週以降は 13% といわれている（A. Voisin, 1963）。さらに乳熱発症時には血清 Ca 値は正常値の半分以下に低下しているが、これに対して血清 Mg 値は正常の範囲内にあり Mg 欠乏とは一見無関係のように見える。乳牛の場合についてオランダの Kemp (A. Kemp, 1960) の説を紹介したい。彼は 822 頭の泌乳中の乳牛の血清 Mg 値とその乳牛の摂取している粗飼料乾物中の Mg 含有量を測定し、粗飼料中の Mg 含有量が 0.2% 以上あればグラステナーは発生しない。言い換えれば乳牛のグラステナーは Mg 含有量が 0.2% 以下の粗悪な粗飼料を摂取する牧場で発生すると報告している。彼の論文の付図（図 1 kemp）を更に検討すると、Mg 含有量 0.2% 以上の粗飼料を摂取している 198 頭の乳牛群をグラステナーが発生しない正常な乳牛群とすれば血清 Mg 値は平均 2.52mg/dl (2.03mEq) となり、0.2% 以下の粗飼料を摂取しているグラステナーが発生する正常でない 529 頭の乳牛群の血清 Mg 値は平均 1.89mg/dl (1.55mEq)、23 頭のグラステナー牛が発生しその血清 Mg 値は平均 0.39mg/dl (0.03mEq) であった。

実験動物では血清 Mg の低下が
血清 Ca の増加をもたらす

実験動物における Mg 欠乏症の研究によれば、Mg 欠乏飼料を投与すると直ぐに血清 Mg 値の低下が見られ、それに伴って徐々に血清 Ca 値が増加することが示されている（George et al 1974）。さらに成長の阻害、腎臓の石灰化（Nephrocalcinosis）、各種柔組織への Ca の沈着、等が指摘されている（Goulding, A., et al 1968, Macintyre, I. and D. Davidsdsson, 1958, Martinendal et al, 1964, Maynard, L et al. 1958, Tufts, E., and Greenberg, D. M., 1937）。最後には虚血、興奮性亢進（Hyperexcitability）などを起こす。実験動物では Mg 含有量の非常に少ない飼料を使用するがそのような Mg 含有量の少ない飼料を投与すると発症の開始から 1 日で直ぐに血清 Mg 値が低下するという。乳牛ではごく普通の飼料を与えるので今までは Mg 欠乏はなかったと考えられてきた。しかしグラステナーが発症していることを考えると Mg 不足について検討しなければならない。さらに乳牛では牛乳を生産しながら胎児を産んでいるので、実験動物ではこのような条件下での実験が行われていない。さらに、実験動物では飼料中の Mg 含有量が低下すると血清 Mg 値の低下に伴って血清 Ca 値の増加が知られている。血清 Ca 値が増加すると尿に排泄され乳に移行することになる。実験動物では妊娠・出産させるような長期間の実験は行われていないので乳汁への影響を報せられていない。

図 1 kemp 粗飼料中の Mg と血清 Mg の関係
乳牛の慢性低Mg血症
（Chronic Hypomagnesemia）の発生

グラスステナリーを伴わないダウナーに近い症状を呈した乳牛の慢性Mg欠乏症に関する報告はただ一例だけで、それはオストリアの山間部で発生したといわれている。（Onderscheka, K et al., 1967）このとき8頭の乳牛は血清Mg値は1.79〜1.67mEqを示していた。

乳牛の正常な血清Ca値と血清Mg値は著者の測定からCaは8.48mg/dl (4.24mEq), Mgは2.43mg/dl (2.00mEq)と考えられるが、Kempの血清Mg値が2.47mg/dl (2.03mEq)であったこともよく一致している。そしてKempのグラスステナリーの発生する乳牛群のMg値は1.64mg/dl (1.55mEq)であり、付属牧場の乳牛群のMg値が2.14mg/dl (1.76mEq)と低い値を示していることもよく一致している（表4）。オランダの例では粗飼料中のMg含有量が低いのにかかわらず血清Mg値が一見正常の範囲に分布しているように見える。個々の乳牛の泌乳量が異なるのでMg必要量も異なるが、血清Mg値は非常に変化し難しいこともその原因として指摘できる。粗飼料中のMg含有量が少ないとき血清Mg値は少しだけ低下しその範囲はいわゆるLabile（変化可能）な量で、その範囲は正常な血清Mg値の10％前後と思われる。正常値は2.43mg/dl (2.00mEq)に対して低下する量は0.2mg/dl (0.2mEq)でしかない。それ以下に低下するとたとえばグラスステナリーやダウナー（Downer起立不能症）に陥り、もしくは乳牛として生存できないのに違いない。付属牧場の乳牛群からグラスステナリー（GT12）と乳熟（MF1, MF15）が発生した（表5）。このようにある乳牛群から一頭のグラスステナリー牛が発生したということはその乳牛がMg欠乏症に陥っていることが原因とされ、さらには同じ粗飼料で飼育されている乳牛群の他の乳牛もMg欠乏症に陥っていると考えるべきである。このことからグラスステナリーが発症する乳牛は発症以前から慢性低Mg血症（Chronic Hypomagnesemia）に陥っていると考えられる。そのような見地に立てばオランダの例では粗飼料中のMg含有量が0.2％以下の多数の乳牛も慢性Mg不足の状態といわざるを得ない。
表 4 広島大学付属牧場の乳牛の血液像

<table>
<thead>
<tr>
<th>NO of cows</th>
<th>Ca (mEq)</th>
<th>Mg (mEq)</th>
<th>Pi (mg/dl)</th>
<th>Al (mg/dl)</th>
<th>Gl (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>54</td>
<td>4.28 a</td>
<td>2.00 a</td>
<td>7.81 a</td>
<td>3.13 a</td>
</tr>
<tr>
<td>Cows *1</td>
<td>25</td>
<td>4.14 d</td>
<td>1.76 a</td>
<td>7.09 a</td>
<td>3.09 ns</td>
</tr>
<tr>
<td>Old *2</td>
<td>12/25</td>
<td>3.90 a</td>
<td>1.68 a</td>
<td>7.16 c</td>
<td>2.85 ns</td>
</tr>
<tr>
<td>Middle *3</td>
<td>7/25</td>
<td>4.14 d</td>
<td>1.84 b</td>
<td>7.30 ns</td>
<td>3.22 ns</td>
</tr>
<tr>
<td>Young *4</td>
<td>6/25</td>
<td>4.63 d</td>
<td>1.84 c</td>
<td>6.68 d</td>
<td>3.44 ns</td>
</tr>
</tbody>
</table>

*1: 大学近縁の牧場より採取。
*2: 5頭次以上の高齢牛。
*3: 2-4 頭次の中。
*4: 初頭次の中。
ns: not significant, a: P<0.01, b: P<0.02, c: P<0.05, d: P<0.1
P: calculated by t-test.

表 5 グラステナーニー、乳熱、ダウナー(Downer)、ケトージニス罹患している乳牛の血液像

<table>
<thead>
<tr>
<th>NO of cows</th>
<th>Ca (mEq)</th>
<th>Mg (mEq)</th>
<th>Pi (mg/dl)</th>
<th>Al (mg/dl)</th>
<th>Gl (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>54</td>
<td>4.28 a</td>
<td>2.00 a</td>
<td>7.81 a</td>
<td>3.13 a</td>
</tr>
<tr>
<td>Grass tetany</td>
<td>1</td>
<td>2.29 a</td>
<td>0.64 a</td>
<td>7.01 a</td>
<td></td>
</tr>
<tr>
<td>Milk fever</td>
<td>13</td>
<td>2.03 a</td>
<td>2.08 ns</td>
<td>2.45 a</td>
<td>3.03 ns</td>
</tr>
<tr>
<td>Downer</td>
<td>18</td>
<td>3.40 a</td>
<td>1.54 a</td>
<td>5.05 c</td>
<td>2.53 a</td>
</tr>
<tr>
<td>Ketosis</td>
<td>19</td>
<td>3.15 a</td>
<td>1.58 a</td>
<td>4.80 c</td>
<td>2.50 a</td>
</tr>
</tbody>
</table>

ns: not significant, a: P<0.01, c: P<0.05, P: calculated by t-test.

グラステナーニーの発生する乳牛群では何が起きているか
1) 若い乳牛では血清 Mg が低く血清 Ca が高い
2) 高齢な乳牛では血清 Mg と血清 Ca が低く血清 Gl が高い
3) 全血では年齢に関係なく Ca が高い

全血でみると表 3 および図 2 に示したように、付属牧場のほとんどの乳牛が全血 Ca 値が高いことを示している。なおこのとき血清 Mg 値はやや低い傾向を示しているが、血清で見るよりも全血 Ca 値の増加は明瞭でこのことは赤血球に Ca が増加していることが推定される。血清では初頭次の中、乳牛は血清 Ca 値が高いが高齢牛では血清 Ca 値が低下しているが、血液全体でみるとすなわち全血 Ca 値が高いので、高齢牛でも Ca の流出は依然として続いている。この様なことから赤血球への Ca 沈着が説明出来るし、さらに付属牧場の乳牛の腎臓発症、腎囊胞、腎臓質部分への Ca 沈着なども実験動物の結果とよく一致している。このような Ca は当然骨から移行してきたものである。すなわち Ca が骨から流出し乳汁に移行し尿に排泄されることになり、骨は脱灰により骨粗鬆症になり、乳は Ca の高血のためアルコール不適定乳になり、腎臓に Ca が増殖する。
乳汁中に移行出来ないように思われるが、初乳では免疫タンパク質が多量に存在することから高分子のグロブリン構造タンパク質の移行は可能と思われる。とくに Cow 7 の乳汁はカゼイン構造タンパク質が少なくなってグロブリン構造タンパク質が多く、アルコール抽出には弱く凝固するが加熱によりゼリー状に凝固し、さらに亜味を呈した。このような血清中に Ca 値が高くなると乳のみならず尿にも Ca の移行が加速されるので、腎臓に負荷がかかりことになり、腎結石、囊胞腎、腎萎縮などが多発する。この Ca は当然乳から移行していくので、骨粗鬆症とアルコール不安定乳、腎臓石灰化は同時に進行することになる。そして血清 Ca 値の増加は血清 Mg 値の低下によって生じる。なお図中で 2-4 産次の中間位置するものは移行形で、血清 Ca 値はやや低下しているが血清 Mg 値はあまり変化がなくやや低い値を示している。血清中においてグロブリン構造タンパク質は結合水を取り込んで巨大な液胞を形成しているに違いない。したがって血清グロブリン構造タンパク質が増加すると血清中の Ca や Mg は低濃度であってもその限外ろ過性の Ca や Mg はその濃度が増加しているはずである。

腎臓の石灰沈着 (Neprocalcinosis) は表 6 と図 4 に示した。すなわち、14 頭の乳牛の腎臓を屠殺直後に採取しそのミネラルを分析したところ、乳牛の腎臓穏部の Ca 値が 10.66 mEq/kg と高く Mg 値が 10.46 mEq/kg と低い傾向値を示した。なかでも Ca は、Cow 5 では 34.67 mEq/kg、Cow 4 では 19.65 mEq/kg と非常に高い値を示した。このような資料は他に見あたらないので未經産牛と比較したがその値は 3.29 mEq/kg であった。さらに 14 頭の腎臓では腎囊胞 3 頭、腎萎縮 2 頭、腎結石 2 頭が見られた。
毎日が新鮮なガーナでの2年間

森 亜紀奈*

2年間の任期も残すところ数か月となり、仲の良かったガーナ人の肉屋といつもの飲み屋で現地の酒を飲んでいるときに、彼にずっと気になっていったことを聞いてみた。「ヨーロッパの人々は奴隷貿易で、あなたたちガーナ人にひどいことしたと思うけど、あなたはヨーロッパの人たちとか他の外国人に対して、嫌いとかいう感情はないの？」彼は特に考えた様子もなく答えた。「ないよ。だって、同じ人間じゃん。」

ガーナと住地について

ガーナ共和国は西アフリカに位置し、脱植民地化時代のサハラ以南のアフリカにおいて初めて現地人が中心となり、1957年に宗主国であるイギリスから独立を遂行した国家である。政体も安定しており、治安も非常に良い。人々はそのことが誇りを持っており、またそのことによって平和な国が維持されているように思える。

住地であるアッバーウエスト州ロウマは首都アクラから約900km、ガーナの北西部に位置し、隣国であるブルキナファソと国境を接する。というのも、パスポートをチェックする入国管理があるわけではない。泳いで渡ることもできる小さな川が国境で、近隣の住民は小さなボートで自由に行き来している。ガーナ側では英語、ブルキナファソ側ではフランス語が公用語だが、人々は同じ現地語を話す。

ロウマはガーナ10州の中でも最貧困地域であり、乾燥・貧困な土地のために農業に適さない地域であるにもかかわらず、ほとんどの住民が農業に頼らざるを得ない状況である。そこで、JICAの調査表には記してあったが、2年間で生きて行きたく「頼らざるを得ない」という表現には違和感を覚える。ロウマの住人はお金がないとは言うが、食べるのは特別困っている様子は感じられず、ご飯を食べるために当たり前前に仕事を見ている（自給自足）、ついつい現金収入があれば

写真1 パオバブの木のある住地

なおよい、という印象だった。ちなみに、ガーナとえば、多くのが人がチョコレートを思い浮かべるだろう。しかしロウマが住むガーナ北部ではまったくゴメンの木を見かねない。私も実際にゴメンの木を目にしたのは、ガーナに赴任して1年以上経ち、南部を旅行したときである。ロウマでは雨季に主食であるトウモロコシや雑穀類、トマトなどを育て、乾季はみなララララしていた。

配属先

配属先は地域住民に対し農業全般の支援を行っている食糧農業省（日本でいう農林水産省）の郡事務所である。農業課では、家畜の生産性を増加するため、住民が栄養を得られるようにすることを目指し、農民への家畜生産・管理・貯蔵技術の指導や販売へのアドバイス等を行っている。牛・豚・ヤギ・羊・鶏・ホロホロ鳥などの家畜飼育の普及に取り組んでいるが、家畜の疾病対策が十分とは言えず、状況であった。また、農業課の人手不足も課題の一つであった。農業課には、農業士1名、普及員5名が所属しており、普及員たちは皆ガーナ国内の農業専門学校を卒業した農業士である。農業士は農業士が中心で、5名の普及員が実際にフィールドで農業業務を行っており、それぞれの担当地域に分かれて農家への訪問、ワクチン接種、食肉検査などの業務を行っている。

*農業・畜生 平成21年3次隊（Akiha Mori）
現在 北海道大学 人畜共通感染症リサーチセンター

0369-9247/13/¥500/1 論文/JCOPY
配属先には獣医課の他に家畜課、作物課などがあり、それぞれ専門員が担当する地域の住民の農業の手助けをしていた。

当初の要請で望まれた活動は、獣医課のスタッフとともに以下の活動を行うことである。
・家畜飼育全般の技術指導（感染症予防、疾病診断、基礎的治療法、衛生的な家畜飼育環境整備）
・クリニックでの診断・治療・ワクチン接種の補助
・飼養、飼育管理へのアドバイス
・現在ある家畜グループの活性化およびグループの新規立ち上げをサポート

応募から参加まで

私は山形の小さな町の出身で、たいして海外の文化に触れることもなく育った。それでも高校生のころには漠然と“青年海外協力隊”というものにあこがれていた気がする。なんとなく楽しそうだし、なんかきっかけいいなぁ、と。

獣医学部5年時に、大学のプログラムでガンビア共和国での1か月の研修に参加し、ガンビア大学獣医学部の先生方の授業を受け、ガンビアにおいての感染症対策やその現状、サファリで野生動物の生態などを学んだ。アフリカを訪れること自体初めてで、すべてが新鮮でエキサイティングなものだった。

大学の感染症の授業で学んだこわい疾病の多くは日本では清浄化されており、それらがもし日本国内で発生した場合には、再び清浄化を目指す。この研修を通して、日本では教科書でしかみないような疾病がガンビア、アフリカではまだまだ流行・常在しているという事実、それらをどう制圧するかではなく、どう付き合うか、という概念を学んだ。このことは私がけっこう大きな衝撃を与えた。

そして、その現状をもっと近くで見て、知りたいと感じた。

6年生になり、卒業後の進路について考え始めたとき、協力隊や海外での仕事に興味はあるものの、漠然とし過ぎていてやりたい気持ちは不安のほうが大きかった。親にちょっと相談するとやたらと反対され、そのときは一応あきらめ、公務員を受けた。

しかしざ公務員に受かったとみると、やっぱり協力隊に行きたい気持ちが強くわいてきた。今私がやりたいのは公務員じゃない！今の協力隊に行きたい気持ちそのまま協力隊に行こう！その気持ちを親に伝えると、

『お前ならそう言うと思った。』と言われ、応募。

『ガーナを希望したの？』と聞かれることがあるが、国はどこでもよくて、現地の獣医療に触れ、実際に家畜診療ができる案件がよかった。といっても、私は臨床実の研究室にいたわけでもなく、臨床の経験はまったくなかった。正直、家畜の飼育環境も人々の生活も全く異なり、十分な診療ができる薬や器具が手に入れないかもわからない場面で、日本での臨床経験の有無に大きく影響するだろうかって考えている。実際、2年間で私は聴診器や体温計すら使わなかった。同僚のガーナ人獣医師はそれらを守っていた。現地の人々と共に働けば、彼らなりのやり方はあるだろうし、技術的なことよりも疾病対策などの概念や住民への啓発活動などでカバーできれば、と思っていた。なにより、協力隊に参加したいという理由は、途上国の人々のために、ということよりも、途上国の家畜の疾病状況や飼育状況を間近で見てみたいという自分の興味のためだ。

私が現地の人々から様々なことを学び、経験することとともに、私の持っている知識や技術がその人たちの生活に役立てられればいいね、ぐらいに考えていた。

任地での家畜飼育状況

任地ロッウラではほぼすべての家で何かしらの動物を飼っていて、鶏などの家禽を飼っていない家は少ないと思うほどだ。それに加え、ヤギ・羊や豚を飼っており、ペットとして犬を飼っている家もある。何かお祝いごとなどがあるときには自分たちで消費したり、現金が必要なときに出したりする。もっと余裕がある人は牛を飼っている。

家禽は基本的に放し飼いで、夜間には鶏小屋に戻っておく。ちょっと話はそれると日本に帰国してみて、本当にガーナの鶏肉、とくにホロホロ鳥の肉はおいしかったことに改めて気づいた。えらそうなことを言うと、日本の鶏肉には味がないと感じてしまう。

ヤギや羊は乾季の間は放し飼い、雨季は放し飼いをしていると畑の作物や野菜を食べられてしまうので、草むらに適当につないでおく。豚はやはり乾季は放し飼い、雨季はさすがにつないのは困難なのでそこで作った小屋に入れていた。家禽もヤギ・羊も夜になると自分たちの家に帰ってくるので感心
していた。とても平和な町だったが、たまに昼間につないでいたヤギを盗まれ、という話も聞いた。

犬はペットとして飼っているが、放し飼いで首輪
などもしていないので、最初のころは野犬だらけだったと思われた。飼い主には従順で、後ろを尾でついて歩く。
かといって、ガーナの人々が犬を思いっきりかわい
がっているのを見たことがない。もし、犬がちょっと
でも変な行動を起こしたり、人を咬んだりすると誰かの飼い犬かどうかかもわからず、その場で殺されてしまう。
狂犬病について皆がちゃんと知っていたわけではないと思うが、そういう状態の犬は危険だ、という認識があるらしかった。

活動

当初の望まれた活動は前述したとおりだが、実際
私が行った主な活動は、農家への往診・ワクチン接種、マーケットでの防病検査、住民への啓発活動だった。

農家への往診・ワクチン接種

人々はそれぞれの家で飼っている動物に何か
問題があれば、獣医に連絡して往診に来てももらう。
ガーナ人獣医師の同僚とともにバイカで家をまわり、
治療やワクチン接種を行った。ときには夜明け
前に1時間ほどかけて赴いたり、雨季には背丈ほとんど
ある草が生い茂るぬかるんだ畑道をぬけて目的の
家にたどり着いたこともある。往診で多かったのは
ヤギや羊の下痢や呼吸器症状、食欲不振で、たまに
難産などにも出合った。皮膚疾病や結膜炎などが多く、
同僚がいつも豪快な処置を施していた。家禽の
ニューカッスル病や小反芻疫病、狂犬病のワクチン
接種も行った。同僚が、足が痛くて歩けない、
バイカが壊れているから仕事に行けないなどの
協力度払い理由で仕事が思うようにできない
こともたまにあったが、今になって思うといい思い出
である。

私の前任者が行っていった往診記録をつける活動を
引き継いで行った。どんな病気でどんな治療をしたか、
その代金とそれを受け取ったかどうか、ずっと記録も
せずになんとかやってきたようになった。ノートを
使って私が作った表に記録することをしばらく続け
ていると、私が言い出さなくても、同僚のほうが先に
気づいて記録を始めた。

農家を訪れると、診療する動物の飼育状況はもちろ
も、人々の生活の様子も伺うことができてとても
おもしろかった。畑の収穫の時期にはたくさんのヤム
イモをもらい、同僚の家で料理してもらって一緒に
いただく。村の奥に行くと現地語しか話せない女性たちがいて、私の片言の現地語で往診に来たことを
伝える。ときには学校に通って英語を理解できる
子どもたちに通訳を頼むこともあった。

マーケットでの防病検査

マーケットでは毎日、肉屋たちが、牛やヤギ・羊、
豚、ときには犬などを自分たちで殺して売る。
その際に獣医師による検査を受けなければその肉
を売ることはできない。検査といっても目視による
確認だけだったが、豚では有鉤囊虫のシストをよく
見かけた。有鉤囊虫は人に寄生し、場合によっては
神経症状や運動障害など重篤な症状を起こすため、
その豚肉を売らせるわけにはいかない。全廃棄を指示
しても、肉屋にとっては豚肉の売却がなくなく
しまうため、なかなか納得してもらえなかっ
た。肉屋
たちの私は友達でもあり、彼らは決して裕福なわけではないし、あげていた貯金がなくなってくると
売りされるのはとても心苦しい。また、ガーナの料理
自体は煮込み料理で、有鉤囊虫のシストも完全に火が
通ったものなら口にしてもかまわない。しかし、調理
に至るまでの準備の過程などで人の口に入って
しまうから感染する。同僚の廃棄の基準もあいまいで、
当初はシストが少しならOK、などと言われていた。
シストが1個でも100個でも廃棄は廃棄だ。同僚と
肉屋たちには検査の意義を何度も伝え、やっと理解
してもらったと思ったらまた同じことを繰り返し
たりと、活動の中で一番苦労したこともしかねない。
最終的には同僚も厳しく取り締まるようになって
楽しくもつらい食肉検査だった。
住民への啓発活動

人々は動物が元気でいるために注射を打ってもらえるいないと思っているが、病気を治すための注射と、防ぐための注射の区別ができていない。ただ、注射を打つに来たわけではないと言われ、何か具合が悪いのかな、と思って話を聞いてみると、ワクチンのことを知っていた。自己たちの家畜を病気にならないという考えがあるので、理解を深めてもらうためにはワクチン接種を呼びかけるのではなくその病気のポスターを作り、農家で病気やワクチン接種の重要性などを説明してしまった。幸運にも、活動2年目にはちょうどガーナ政府による家禽のニューカッスル病ワクチン無料キャンペーンが行われたため、啓発活動も自然な流れで行うことができたし、ワクチン接種農家も増加した。ワクチン接種を行った後でも、まだ家畜は感染している家畜の病気について尋ねられることも多かった。接種予防に対する関心を持つ人々が増えたと感じられた。同様にも、ワクチン接種の告知などを行う場合にはただ農家を訪問するだけでなく、疾病や薬についての説明を行うことの重要性を強調した。

全体の活動を通して、私が一日でわかる外国人だったこと自体がプラスに働いていたように思う。ロウラの現地語では白い女性を“ナサポ”というのが、獣医とのコンタクトの取り方がわからない人も、マーケットで肉屋のところにいるナサポが獣医らしい、とか、ナサポに言えば獣医に来てもらえる、とかいう喋る（？）がなかったのか、私とも同僚とも面識のない人からもよく笑顔の依頼を受けた。

任务に困ったことの解決法とその結果

正直、今振り返ってみても特に困った記憶がない。私はそもそもかなりポジティブ思考で、悩んだりしないのが、協力隊活動中に気をつけていることは、疲れないようにすることだ。物事がうまく進まないことがあっても、そのときはイラっとしてもするが、それでもガーナの文化の一面を見られたと思えた、新鮮な出来事として笑っていた。

活動では、1年目は1年を通した家畜の飼育状況や疾病発生状況、配属先の仕事や人々の生活を知るために、ただ同僚の手伝いや頼まれたことを行い、よっぽどのことがない限り自分で何か提案したりしなかった。ガーナの人々がどのように家畜を飼っているか、またどのタイミングでどんな疾病が流行するのか、それを知るとともに、問題点を認識することも仕事のうえと考えていた。配属先のスタッフは皆ペテラムで、私の親でもおかしくない歳で、そんな人たちに対し、先進国から来たらといってガーナのことをよく知らない。娘に最初からあれこれ指示したアドバイスしたりしても感じが悪い。と、私は思う。彼らにとって私は、なんだとかよくわからないけど、JAPAN という外国からわざわざボランティアにやってきたとこの馬の骨かもわからない外国人だ。ガーナ人がやっていることは同じようにやってみた。やってみろと言われたこともできるだけやってみた。
２年目になり、往診中に気になったことをアドバイスしてみたり、啓発活動を提案して一緒にやってみたり、スムーズに活動することができた。１年目の姿勢が実ったかどうかは比較することはできないが、提案したことは次第にOKしてくれたし、お互い気持ちよく仕事ができたと思っている。

協力隊に参加して…

本当に貴重で毎日が新鮮な２年間だった。最後の最後まで驚くようなことが起こったり、わからないこともまだまだある。途上国の病院の飼育環境や疾病発生状況を実際に見てその中で活動できたことは本当に良い経験となった。そういった経験を、感染症制圧を考えていく際に活かしたい、というのもボランティアに応募した理由の一つでもあった。もとから予想していた通りではあったが、やはり実際に自分の目で見て感じることができて本当によかった。獣医師の仕事は人間の健康のためだから、と考えていたが、ガーナでの２年間でそれを再認識することができた。診断検査では目の前で家畜がさばかれ、自分の目で検査した肉が売られていく様子を毎日見ていたし、人々が飼っているヤギや鶏は飼料が必要なときの収入源になる。家畜の健康が人々の生活に大きく影響しているのを目当てにし、獣医の仕事の重要さを改めて感じることができた。

肉屋たちは厳しいことも言わなければならな
し、煙たがられるだろうと想像していたが、振り返ってみると、ガーナでできた友達は肉屋ばかりだ。仕事が一段落すると必ず飲みに誘ってくれたし、くだらないことから少し真面目なことまでたくさん話してきた。私の誕生日を一緒に祝ってくれたことはいつも飲み屋で大量のケンブを食べただけ（だが）や、帰国前に全員でパーティーができるのも本当にうれしかった。彼らと過ごした時間はのんびりとして、小さくならないこともとても楽しく、ガーナ人のホスピタリティ精神とフレンドリーさ、感情の豊かさには感心させられてばかりだった。

冒頭で紹介したエピソードも、彼らガーナ人の性格をよく表していると思う。彼にとっては本当に何気ない会話のひとつに過ぎず、まったく覚えていないだろうが、私にとってはかなり印象深い出来事だった。

帰国後から現在まで母校である北海道大学の人獣共通感染症リサーチセンターで特定専門職員として勤務している。その名の通り、人畜共通感染症について研究を行っている機関なのだが、留学生や海外からの研修生も多く、彼らとともに仕事をしたり、研修生には指導をすることもある。私はずっと英語は得意ではないと思っていたし、そのために外国人とコミュニケーションをとることにどこかで苦手意識を持っていたと思う。大学５年
次のザンビア研修で少し抵抗感はなかった感じがしました。さらにガーナで2年間を過ごし、単に英語の能力だけでなく、英語でスムーズにコミュニケーションをとる自信がついたし、特にアフリカの人々のリズムに合わせてお互いストレスなく仕事を進めることもできるようになった。そして、今年の10月からは現在の仕事でザンビア共和国に長期派遣され、ウイルス性感染症の研究プロジェクトで現地の研究者とともに仕事をする予定である。

協力隊に興味がある・応募を考えている方へ

協力隊に行ってみたい、海外で働いてみたいという気持ちはあるけど、なんとかいろいろ不安……という人は多いと思います。語学や技術に自信がないけれど何かしらできることはあるし、ひとりの人間として、現地の人々と楽しく過ごし、また日本で自分の周りの人がその国や海外に興味を持たったりすることだけでも大きな意義があると感じています。実際に、協力隊の任期を経えて帰国後、現在の仕事でザンビアを訪れたとき、海外の先進国に興味のない人が「アフリカも身近に感じてきたな」と言ってたことがなんだかとてもうれしく感じました。

今回、私のガーナでの活動や感じたことなどを書きましたが、同じガーナ国内でも地域によって言葉も文化も異なり、同じ地域でも職場や同僚が異なれば活動内容もさまざまなです。いろんな隊員に同じ出来事が起こったとしてもそれぞれの感じ方でおもしろくも腹立たしくも思えます。私の体験はほんの一例で、協力隊員ひとりひとり違った経験ができるはずです。

私も応募する際には、ある程度働いて経験を積むでから行くべきか、それとも働き始めてしまったらやめにくくなるし新卒で行ってしまうべきか、と迷いましたが、『今のうちに行っちゃえー！』という勢いで応募しました。『やりたい！』という気持ちを大切に、ちょっと思い切ってみると、1年後くらいには海外で活動を始めているかもしれないです。

【農業畜産情報】

イノシシの特長活かした新ブランド豚

徳島県は、イノシシの特長を活かした新ブランド豚を開発した。豚が改良されていく中で希薄になってきたイノシシが持つ肉の旨みを、遺伝子レベルで再び豚に継承させている。

イノシシの遺伝子には飽和脂肪酸を高め、さらに肉の赤色とミオグロビン含量を高める機能やpHを高め黄色度を下げる染色体があることが発見された。この染色体が継承されるような系統を構築するための掛け合わせを繰り返した。

秋の出荷を目指し、豚群の中から選抜されたオス1頭、メス5頭が指定の養豚農家に提供され飼育中で、2015年度には300頭の出荷を計画する。「阿波ポーク」に次ぐブランド豚に育て上げたいとしている。