ニコチン酸（ナイアシン）の要求量と給与

<table>
<thead>
<tr>
<th>誌名</th>
<th>畜産の研究 = Animal-husbandry</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSN</td>
<td>00093874</td>
</tr>
<tr>
<td>巻/号</td>
<td>683</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 367-372</td>
</tr>
<tr>
<td>発行年月</td>
<td>2014年3月</td>
</tr>
</tbody>
</table>
ニコチン酸（ナイアシン）の要求量と給与

大成 淸*

1916年、水溶性の生長因子が「水溶性ビタミン」と名付けられて以来、その後数多くのビタミンが発見され、今日ではビタミンB群として認められている。特にアミノ酸（ビタミンB1）、リポフラビノ（ビタミンB2）、パントテン酸、ニコチン酸（ナイアシン）、ビタミンB6（ビリドキシン）、ビオチン、カルビン、ビタミンB12がこのグループに入る。

これらのビタミンのうち実用飼料中に十分含まれているのはビタミンB6、ビオチンとビオチンで、飼いの場合に不足するのはリポフラビノとパントテン酸である。

大麦飼料では足らないが、フラボコング飼料で不足するのはナイアシンで、コリンは幼豚の場合飼料中のメチオニン含量に影響され、不足する場合もある。

ニコチン酸は植物中に存在するものであり、ニコチン酸アミドは動物における代謝型である。

ニコチン酸は穀物およびその副産物や、蛋白質飼料中に広く分布するが含量が少ない。また大部分は結合型であるので、利用不能である。

ナイアシンは上記のようにニコチン酸とニコチン酸アミドを含む。補酵素NAD（nicotinamide adenine dinucleotide）、NADP（nicotinamide adenine dinucleotide phosphate）の成分として、電子および水素の伝達に関与する。

ニコチン酸の欠乏症状としては、発育不良、食欲不振、嘔吐、飼料利用率の減少、下痢、皮膚炎、皮膚の乾燥、脱毛、口唇、舌、口内粘膜の潰瘍、胃潰瘍、盲腸、直腸の炎症、壊死、正常赤血球の貧血などが古くから挙げられている。

ニコチン酸の欠乏は同一条件でも現われ方が一定せず、他の栄養素の欠乏と複合している場合がある。

1. ニコチン酸とトリプトファン

ニコチン酸の要求量は、飼料中のトリプトファン含有量により影響される。このことについて、パウダービタミンB6（G. Harmonら1969）の研究がある。

最初の試験は黄色トウモロコシの配合率0%、40%と80%、カゼイン（ビタミン抽出）の配合率を14%、12%、8%とした飼料を、体重14kgの雛乳児に給与した。

この飼料のトリプトファン含量（%）は0.10、0.12、0.12である。飼育試験の結果、発育と飼料効率をもとに推定された総ニコチン酸要求量を、トウモロコシ中のニコチン酸を差し引いた場合乳児に対し11、15、14 ppmであった。

試験2は黄色トウモロコシ80%、カゼイン（上記）10%飼料（トリプトファン0.19%）を離乳児に給与した場合、総ニコチン酸要求量は23 ppmと推定された。

試験3はトウモロコシ、大豆粕飼料（CP16.2%、トリプトファン0.23%、総ニコチン酸23 ppm）では、ニコチン酸の添加効果が認められなかった。

以上3つの試験から飼料中のトリプトファンが十分な場合、活性ニコチン酸の必要量は13 ppmと推定された。なお日本標準（2013）の子豚体重10～20kgのスタート用飼料は、ニコチン酸量を12.5 mg/kgとしている。

トリプトファンからナイアシンが生体内で作られるが、飼料の加工法によっては効率が著しく低下する。NRC標準ではナイアシン1 mgは、トリプトファン50 mgが必要としており、この率からすればトリプトファンの添加により、ナイアシンを補給することは経済的ではない。

Hormonら（1970）の研究は続く。試験1は36頭の雛種子豚を用い、48日齢から61日間飼育した。

1区は基礎飼料（トウモロコシ80%、トリプトファン0.12%、ニコチン酸18 ppm）を給与した。

2区は1区にL-トリプトファン0.02%添加、3区はL-トリプトファン0.04%添加、4区はDL-トリプトファン0.02%添加、5区はDL-トリプトファン0.04%添加、6区はニコチン酸13.2 ppm添加した。

*家畜栄養コンサルタント（Kiyoshi Onari）

0369-5247/14/V500/1論文/ICOPY
試験2は35頭のヨークシェイア種子豚を用い、40日齢から56日間飼育した。

1区は上記基礎飼料、2区は1区にレ－トリブファン0.01%添加、3区はDL－トリプトファン0.01%添加、4区はニコチン酸13.2 ppmを添加した。

5区は基礎飼料中のトウモロコシをエン麦とコーンスターチで代替、6区は同じく小麦とコーンスターチで代替、7区はグルコースをフスマ5%で代替した。

2つの試験結果から1区と2区にてTR 0.01%は、ニコチン酸13.2 ppmに相当する。トウモロコシ中のニコチン酸は、豚に利用されない。基礎飼料にトリプトファン、ニコチン酸を添加することにより、増体重力と飼料効率が改善された。

トウモロコシを小麦またはエン麦で置換しても、増体重率飼料効率も改善されなかった。

トウモロコシの基礎飼料に、フスマを5%加えることにより（7区）、ニコチン酸またはトリプトファンを添加した場合と同じ成績を示した。

ナイアシンの有効率についてはCarterとCarpenter（1982）の食品についての研究がある。

トウモロコシ、小麦、玄米、マイロなどの穀類中のナイアシンは、大部分は結合型のものであり、有効率は約35%である。

パレジシの有効率は63%、落花生は46%である。

これに対し遊離型のナイアシンは、有効率100%で、豚や牛の肝臓、スイートコーン（蒸煮）、煮豆などがこれに属す。

2. 肉豚に対するナイアシンの必要量

T. J. Cunha（1982）は、豚の栄養でナイアシンの要求量を増加させる条件として、つぎの12項目を挙げている。

1. 畜飼によるストレス、病気の潜伏期
2. 肉質および増体重日量を目標とする選択と淘汰
3. 交雑豚（合成豚）の飼養
4. 飼料中のナイアシン、トリプトファン含量と有効率に影響する加工技術の変化
5. スノコ床豚舎の普及による喫塩の減少
6. 飼料中のカビの発生と混入
7. 飼料中におけるビタミン類抗生物質の存在
8. 離乳日齢の早期化
9. 栄養素間の相互作用
10. 環境要因の変化
11. 飼料用作物栽培の栽培効率現象
12. 富ビタミン飼料（牧草、アルファルファミール、魚粉、家畜副産物飼料、リッチラーズ・ソリュブルなど）の使用量の減少

以上いろいろな条件が挙げられているが、何よりも大きな因子は、飼育を含めた品種改良である。

中型の純種場から種豚の時代を迎え、その後三元輪番交配種に移行、やがて大型豚の普及から、今や合成豚の時代へと脱皮を重ねた。

品種改良の波に飼養学は追随せざるを得なくなり、養分要求量もドンドン増加した。

現在は増体重日量と飼料効率の追求から、動物愛護と、肉量よりも肉質の時代に移りつつある。このため一応要求量の増加も足踏み状態にあるが、何かの要因を契機にまた増加に転じることも知れない。

ミズーリ大学のD. J. IversとT. L. Veum（1994）は、低蛋白質のトウモロコシ・大豆粕飼料に、合成ナイアシンを添加した飼料を、離乳から出荷まで給与し、その影響をみている。

試験は4頭の離乳豚（平均体重7.55 kg）、336頭（4頭×12ペン×7試験区）を用い、スターターエー35日、育成一仕上げ期98日、計133日間の試験を実施した。飼育豚舎は全面スノコ床である。

給与飼料は低蛋白質飼料の1区と、正の対照飼料の2区である。

1区のスターターエー飼料の含有成分は0〜14日はCP16.7%,リジン1.10%,トリプトファン0.19%,14〜35日CP14.1%,リジン1.05%,トリプトファン0.15%である。

2区飼料の0〜14日はCP18.6%,リジン1.10%,トリプトファン0.26%,14〜35日はCP17.9%,リジン1.01%,トリプトファン0.21%である。

1区の育成一仕上げ期飼料の含有成分は0〜14日はCP16.7%,リジン1.10%,トリプトファン0.19%,14〜35日はCP14.1%,リジン1.05%,トリプトファン0.15%である。

2区飼料の0〜14日はCP18.6%,リジン1.10%,トリプトファン0.26%,14〜35日はCP17.9%,リジン1.01%,トリプトファン0.21%である。

1区の飼育豚舎の比較は、CP12.4%,リジン0.93%,トリプトファン0.14%,63〜91日はCP10.5%,リジン0.87%,トリプトファン0.12%,91〜133日はCP10.3%,リジン0.80%,トリプトファン0.11%である。

2区飼料の35〜63日はCP15.3%,リジン0.95%,トリプトファン0.18%,63〜91日はCP12.8%,リジン0.83%,トリプトファン0.15%,91〜133日はCP12.3%,リジン0.79%,トリプトファン0.14%である。

1区の飼育豚舎の比較は、CP12.4%,リジン0.93%,トリプトファン0.14%,63〜91日はCP10.5%,リジン0.87%,トリプトファン0.12%,91〜133日はCP10.3%,リジン0.80%,トリプトファン0.11%である。
表1 供試飼料の配合割合（風乾ベース，％）

<table>
<thead>
<tr>
<th></th>
<th>1期</th>
<th>2期</th>
<th>3期</th>
<th>4期</th>
<th>5期</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0~14日</td>
<td>14~35日</td>
<td>35~63日</td>
<td>63~91日</td>
<td>91~133日</td>
</tr>
<tr>
<td>低蛋白区</td>
<td>対照区</td>
<td>低蛋白区</td>
<td>対照区</td>
<td>低蛋白区</td>
<td>対照区</td>
</tr>
</tbody>
</table>

乾燥ホエー | 15.00 | 15.00 | - | - | - | - | - |
コーン、グルテンミール | 5.00 | - | - | - | - | - | - |
トウモロコシ（粉末） | 54.33 | 47.35 | 78.71 | 71.45 | 83.03 | 76.03 | 86.95 | 80.83 | 90.07 | 83.68 |
大豆粕（CP48％） | 15.00 | 27.50 | 16.18 | 23.86 | 10.83 | 18.74 | 7.00 | 13.65 | 4.10 | 11.01 |
ホエイ（大豆）(ジョイス) | 7.50 | 7.60 | 1.50 | 1.30 | 2.38 | 2.00 | 2.48 | 2.40 | 2.45 | 2.25 |
第2リンカル | 1.67 | 1.40 | 1.95 | 1.95 | 1.77 | 1.60 | 1.56 | 1.45 | 1.35 | 1.20 |
炭酸カルシウム | 0.10 | 0.15 | 0.29 | 0.29 | 0.30 | 0.38 | 0.34 | 0.37 | 0.36 | 0.43 |
トレミネラル、ミックス | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
ビタミン、ミックス | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
塩酸レリシン | 0.40 | - | 0.52 | 0.15 | 0.58 | 0.25 | 0.58 | 0.30 | 0.58 | 0.32 |
DL-メチオニン | - | - | 0.05 | - | 0.06 | - | 0.05 | - | 0.05 | 0.01 |
L-トリプトファン | - | - | - | - | 0.02 | - | 0.02 | - | 0.02 | - |
L-イソプロシン | - | - | - | - | 0.03 | - | 0.02 | - | 0.02 | - |

CP % | 16.70 | 18.60 | 14.05 | 17.85 | 12.40 | 15.30 | 10.45 | 12.80 | 10.25 | 12.30 |
レリシン % | 1.10 | 1.10 | 1.05 | 1.01 | 0.93 | 0.95 | 0.87 | 0.83 | 0.80 | 0.79 |
DE kcal/g | 3.74 | 3.76 | 3.52 | 3.50 | 3.52 | 3.53 | 3.52 | 3.55 | 3.52 | 3.54 |

(D.J. Ivers and T.L. Veum: 1993)

表2 トウモロコシ・大豆粕飼料へのナイアシン添加の効果

<table>
<thead>
<tr>
<th>ナイアシン添加量 (ppm)</th>
<th>1区（低蛋白飼料）</th>
<th>2区（正の対照区）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>豚の体重 kg</td>
<td>35日末</td>
<td>18.80</td>
</tr>
<tr>
<td>133日末</td>
<td>91.90</td>
<td>90.33</td>
</tr>
<tr>
<td>摂取量 kg</td>
<td>0〜35日</td>
<td>0.67</td>
</tr>
<tr>
<td>35〜133日</td>
<td>2.44</td>
<td>2.39</td>
</tr>
<tr>
<td>増体取量 kg</td>
<td>0〜35日</td>
<td>0.32</td>
</tr>
<tr>
<td>35〜133日</td>
<td>0.75</td>
<td>0.73</td>
</tr>
<tr>
<td>飼料効率</td>
<td>0〜35日</td>
<td>0.48</td>
</tr>
<tr>
<td>35〜133日</td>
<td>0.30</td>
<td>0.30</td>
</tr>
</tbody>
</table>

(D. J. Ivers and T. L. Veum: 1994)

試験は1区に単体ナイアシンを0, 3, 9, 27と81 ppm添加した5つの区と、2区に0と81 ppm添加した2つの区の計7区を設けた。

1区の含有成分はNRC標準に準拠し、2区はNRC標準よりも3％単位低くしている。具体的な配合割合は表1のとおりである。

試験の結果は表2に示した。この結果をみると、これまでの育成一仕上げ期におけるナイアシン添加の成績と一致して、CP含量の高低に関わらず、採食日量、増体日量、飼料効率に有意な改善効果は見られなかった。

低蛋白基質飼料中のトリプトファン量は、NRC標準の要求量よりも0.01〜0.02％多い。これがトリプトファン50 mg=ナイアシン1 mgの割に転換され、ナイアシンの不足を補ったとも考えられる。

これとは別に、NRC標準のトリプトファン量は少し過ぎ、トリプトファンは過剰ではなかった、過剰としても極度に偏るといろいろな意見もある。
結論として、いろいろな指標を勘案した結果、トウモロコシ・大豆粕を用いた肉豚用飼料において、ナイアシンの添加は効果がなかったということである。

3. 妊娠・授乳豚に対するナイアシンの添加効果

カンガル州立大学のR. D. Goodbandら（1987）は、妊娠・授乳豚に対するナイアシンの添加が、その豚の繁殖成績と豚肉の飼育成績に及ぼす影響をみている。

供試豚は未経産豚60頭を3区に分け、2頭まで試験したが、給与飼料はトウモロコシ・大豆粕飼料で、妊娠0～90日は妊娠用飼料aを、1日1頭当たり4ポンド(1.8kg)給与した。ナイアシンは1日1頭当たり50mgの給与とされた。

妊娠90～114日は妊娠用飼料bを、1日1頭当たり5ポンド(2.27kg)、授乳期は授乳豚用飼料を21日間、9ポンド(4.08kg)給与した。

妊娠用飼料aの配合割合(%)はトウモロコシ80.45、大豆粕(44%)15.55、2リシナル(21%)2.05、炭酸カルシウム1.10、食塩0.5、ビタミン・プレミックス0.25、トレスマネラル・プレミックス0.10、合計100.0である。

妊娠用飼料bはトウモロコシ86.17、大豆粕10.45、第2リシナル1.50、炭酸カルシウム0.95、食塩0.45、ビタミン0.20、トレスマネラル0.08、プレミックス(50g/ポンド)0.20、合計100.0である。

授乳用飼料はトウモロコシ75.48、大豆粕19.9、第2リシナル2.25、炭酸カルシウム1.25、食塩0.5、ビタミン0.22、トレスマネラル0.10、プレミックス0.20、ビオチン(100mg/ポンド)0.10、合計100.0である。

ナイアシン摂取量(ug/kg)では、1区は妊娠期50、授乳期100、2区は250/500/3区は500/1,000であった。

○初産次の子豚成績

供試母豚数(頭)は1区20、2区18、3区22である。

一産当たり分娩子豚数は1区11.3、2区9.6、3区9.9、生存子豚数は1区9.7、2区8.8、3区8.7。補正後の一産頭数は1区9.7、2区8.8、3区8.7で、何れもナイアシンの摂取量の多かった豚で差はなかった。

離乳時の生存率(%)は1区82.7、2区88.9、3区86.5で差はなかった。一産当たり離乳頭数(頭)は1区7.5、2区8.0、3区7.8で差はなかった。

子豚の分娩体指數(g)は1区1,139、2区1,179、3区1,288で、ナイアシンの摂取量の増加により有意に大きくなった。

分娩時の一産当り子豚体重(㎏)は1区11.25、2区10.48、3区10.98で、ナイアシンの影響はなかった。

離乳時の子豚体重(㎏)は1区4.63、2区4.94、3区4.99。離乳時の一産当り子豚体重(㎏)は1区34.9、2区39.6、3区38.3で、何れも区間差はなかった。

○初産次の母豚成績

妊娠期中の増体重(㎏)は1区46.1、2区45.9、3区49.1で、区間差はない。妊娠期中の背脂厚(㎜)の変化は、1区1.0、2区(＋)0.76、3区(－)1.52で、区間差はなかった。

母豚の妊娠108日目の体重(kg)は1区162.6、2区161.9、3区163.0で、区間差はない。母豚の妊娠期中の背脂厚(㎜)は1区21.6、2区23.1、3区19.8で、ナイアシンの増加とともに曲線的に減少した。

母豚の授乳中の体重減(kg)は1区(－)7.03、2区(－)7.30、3区(－)6.80で差はない。母豚の授乳中の背脂厚(㎜)の変化は、1区(－)1.27、2区(－)3.05、3区(－)0.25で2次曲線的に減少了。

離乳後7日以内の発情回帰数(%)は1区95.0、2区100.0、3区86.4で11日以内の1区100、2区100、3区95.4で統計的な区間差はなかった。

○2産次の子豚成績

供試母豚数(頭)は1区18、2区15、3区18である。

一産当り分娩子豚数は1区9.6、2区9.9、3区9.2、生存子豚数は1区8.7、2区9.2、3区8.4。補正後の一産頭数は1区8.6、2区9.2、3区8.2である。

このなかでナイアシンの効果のあったのは、補正後の一産頭数で二次曲線的な効果が認められた(p<0.05)。

離乳時の生存率(%)は1区96.3、2区95.6、3区98.5で区間差はなかった。一産当りの離乳頭数(頭)は1区8.2、2区8.2、3区8.5で差はなかった。

子豚の体重をみると、分娩時(g)は1区1,606、2区1,547、3区1,556。一産当り子豚体重(㎏)は1区13.61、2区14.06、3区12.61。離乳時子豚体重(㎏)は1区5.17、2区5.35、3区5.49。一産当り子豚体重(㎏)は1区43.2、2区43.7、3区45.7で、何れも項目もナイアシンの影響はなかった。

○2産次の母豚成績

母豚の妊娠中の増体重(㎏)は1区41.1、2区41.3、3区41.4で、区間差はなかった。
大成：ニコチン酸（ナイアシン）の要求量と給与

3 区 44.6. 母豚の背脂肪厚（mm）の変化は 1 区（+）1.02, 2 区（-）1.52, 3 区（+）0.51 である。

母豚の妊娠 108 日の体重（kg）は 1 区 186.4, 2 区 183.6, 3 区 187.8, 同背脂肪厚（mm）は 1 区 21.1, 2 区 22.1, 3 区 20.6, 授乳中の体重変化（kg）は 1 区（-）10.1, 2 区（-）7.6, 3 区（-）12.4. 授乳中の背脂肪厚（mm）の変化は 1 区（-）4.83, 2 区は（-）5.59, 3 区 4.06 で, 何れの項目もナイアシンの影響

発情再帰率（％）は離乳後 7 日以内は 1 区 61.1, 2 区 86.7, 3 区 72.2, 14 日以内は 1 区 100.0, 2 区 100.0, 3 区 94.4 である, 何れの場合も区間差は認められなかった。

以上の結果をみると, ナイアシンの給与効果は予想に反して少ない。

効果のあったのは初産次子豚の体重増と, 母豚の妊娠中, 授乳中の背脂肪厚の変化だけであり, 2 産次は補正子豚数だけであった。

マイナスの効果は初産次子豚の検査, 生存子豚数, 補正子豚数である。

4. 母豚の繁殖性と産子への影響

ミズロール大学の D. J. Ivers ら(1993)は, Y×L の母豚（平均体重 204kg, 平均産次 2.6 才）を用い, 初産＝初産 5 区の産次に至るまで飼育した。

給与飼料は CP 12.8%のトウモロコシ・大豆粕飼料で, ナイアシン 01 区および 33 mg 添加 (2 区) の影響をみた。妊娠中の飼料給与量は 2.0 kg, 授乳期は 1.8 kg + 子豚 1 才当り 0.45 kg を追加した。

妊娠・授乳用飼料の配合割合（％）は, トウモロコシ 70.8, 大豆粕（CPF 44%）12.7, エン要 10, ラード 2.5, 第 2 リンカル 2.40, 炭酸 0.60, ミネラル・プレミックス 0.50, ビタミン・プレミックス 0.50 である。

含有成分（分析値）は総ナイアシン 23.0 ppm, CP 12.8%, リジン 0.58%, トリプトファン 0.12%, メチオニン + システイン 0.50%, レシノニン 0.48%, 水分 14.0% である。

供試頭数（頭）は 1 産次は 1 区 34, 2 区 33, 2 産次は 27:31, 3 産次は 21:25, 4 産次は 20:23, 5 産次は 14:12 で, 総数は 116:124 である。

交配時体重（kg）は 1 産次は 1 区 176.1, 2 区 176.5, 2 産次は 204.4:204.7, 3 産次は 227.2:229.0, 4 産次は 219.6:222.1, 5 産次は 235.4:232.1, 平均は 212.5:212.9 で, 何れの場合も区間差は認められなかった。

妊娠中の増体重（kg）は, 1 区 産次は 1 区 48.9, 2 区 49.6, 2 産次は 49.4, 48.8, 3 産次は 24.5, 16.7, 4 産次は 44.2, 36.4, 5 産次は 42.5, 41.4 の, それぞれの平均は 41.9, 38.6 で, 何れも区間差は認められなかった。

分娩前体重（kg）は 1 産次は 1 区 20.7, 2 区 19.3, 3 区は 21.1, 22.5, 3 産次は 12.9, 17.1, 4 産次は 19.0, 19.2, 5 産次は 14.4, 13.1, 平均は 17.6:18.2 で, 何れも区間差は認められなかった。

発情再帰日数（日）は 2 産次は 1 区 5, 2 区 5.3, 3 産次は 4.9:4.9, 4 産次は 4.2:4.4, 5 産次は 4.7:4.8, 平均はともに 4.9 であった。

生存分娩頭数（頭）は 1 産次は 1 区 10, 2 区 10.7, 2 産次は 9.8, 10.3, 3 産次は 10.6, 10.2, 4 産次は 11.0, 11.1, 5 産次は 10.6:10.1, 平均はともに 10.5 であった。

死産子豚数（頭）は 1 産次は 1 区 1.0, 2 区 1.3, 2 産次は 1.3:1.3, 3 産次は 1.8:1.2, 4 産次は 1.8, 5 産次は 2.6:2.9, 平均は 1.7:1.6 で差はなかった。

離乳頭数（頭）は 1 産次は 1 区 8.8, 2 区 9.2, 2 産次は 8.4:8.5, 3 産次は 8.0:8.4, 4 産次は 8.5:8.6, 5 産次は 7.8:7.0, 平均はともに 8.3 である。

分娩時の平均体重（kg）は 1 産次は 1 区 1.56, 2 区 1.47, 2 産次は 1.65:1.63, 3 産次は 1.53:1.56, 4 産次は 1.59:1.61, 5 産次は 1.41:1.44, 平均は 1.55:1.54 で差はなかった。

離乳時平均体重（kg）は 1 産次は 1 区 7.72, 2 区 7.48, 2 産次は 7.49:7.64, 3 産次は 7.43:7.42, 4 産次は 7.34:7.39, 5 産次は 7.36:7.19, 平均は 7.47:7.42 で, 何れも区間差は認められない。

以上の結果, CPF 25.8%のトウモロコシ・大豆粕飼料では, 妊娠豚および授乳豚に対し, ナイアシン添加の必要は認められないという結論となった。

むすび

実際にナイアシン欠乏の起こり易いステージは, 現在では一般化している早期離乳の人工乳期と, 制限飼料を行なった場合の妊娠期である。

今から妊娠用飼料として, トウモロコシ 70.8%, 大豆粕 12.7%の配合を考えてみると, その中のニコ
チン酸は 22.9 mg/kg となり、日本標準 (2005) の
要求量 10 mg を 2.3 倍も上回り不足することはない。 ところが、NRC 標準 (1998) は有効ニコチン酸とし
て 10 mg/kg を要求している。
ナイアシンの大部分は穀粒、その副産物に存在し、結合型になっており、豚はこれを利用することができないと考えられている。
ところが、実際に給与してみるとなかなかナイア
シンの欠乏症状が発現しない、あるいは添加ナイアシンの効果が認められない試験例が現われるので、
トウモロコシや大豆粕にも有効ナイアシンが含まれているのではないかとも思われる。

これは今後の研究に待たねばならないが、かりに
トウモロコシのナイアシン有効率を 40%、大豆粕を
75% とすれば、上記のトウモロコシ 70.8%、大豆粕
12.7% 飼料の有効ナイアシン量は 10.5 mg/kg とな
り、NRC 標準の要求量を充足することになる。

参考文献
1) Hanson, L. E., Feedstuffs 31 (1) 30. 1959
2) Blair, R., and F. Newcombe. J. Anim. Sci. 60 (6) 1508. 1986
5) Goirl, J., Feedstuffs 66 (4) 12. 1994

【おしらせ】
第 45 回ルーメン研究会シンポジウム（主催：ルーメン研究会）
日 時：平成 26 年 3 月 26 日（水）13:10～16:55
会 場：つくば国際会議場 小会議室 303
参加費：一般 2000 円 学生 1000 円
プログラム：
13:10～13:30 ルーメン研究会年次総会
13:30～13:40 会合挨拶（小林泰男会長）
シンポジウム「ルミナント研究から疾病予防の実践へ」
13:40～14:20 「乳牛の飼養試験と分析データから見えてきた研究展開」
（独）畜産草野研究所 造引史郎
14:20～15:00 （題名未定）
（株）バリーファーム・コンサルティング 吳 禎 昌
14:20～15:00 「乳牛健康に関する研究展開」
（株）畜産草野研究所 北脇体他
15:00～15:30 「乳牛飼料中のエネルギー状態と飼育方法の影響」
（独）畜産草野研究所 北脇体他
15:30～16:00 「乳牛における分婏後の早期回復状態」
（株）畜産草野研究所 北脇体他
16:00～16:30 総合討論
*研究会終了後、つくばセンター近隣で懇親会を行います（18:00～20:00頃、要事前申し込み）。
シンポジウム・懇親会に関する問い合わせ:
信州大学農学部 上野 豊（ytkuyeno@shinshu-u.ac.jp）
その他、研究会に関する問い合わせ:
畜産草野研究所 分子栄養研究チーム 三森真琴（mitumori@affrc.go.jp）
*各講演の概要、懇親会の詳細等については、ルーメン研究会ホームページ
http://jsrmp.ac.affrc.go.jp/indexj.html を是非ご参照ください。