イチゴ品種「ゆめのか」におけるクラウン加温の効果

<table>
<thead>
<tr>
<th>誌名</th>
<th>愛知県農業総合試験場研究報告 = Research bulletin of the Aichi-ken Agricultural Research Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSN</td>
<td>03887995</td>
</tr>
<tr>
<td>巻/号</td>
<td>50</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 75-78</td>
</tr>
<tr>
<td>発行年月</td>
<td>2018年12月</td>
</tr>
</tbody>
</table>
イチゴ品種「ゆめのか」におけるクラウン加温の効果

安藤(小島)寛子1)・番 喜宏2)・恒川健弘3)

摘要：愛知県におけるイチゴ高設栽培での「ゆめのか」を対象とした冬期のクラウン温度制御の育成、収量への影響を調査した。気温の下がる10月末から翌年2月末の間クラウン部分を約20℃に終日加温することにより、12月から1月の草高く発開数が増大し、一次腋花房以降の花開が促進され、1〜2月の商品果収量が48〜83％増えることが明らかとなった。

キーワード：イチゴ、ゆめのか、高設栽培、クラウン温度制御

緒 言

国立研究開発法人農業・食品産業技術総合研究機構で開発されたイチゴのクラウン温度制御技術は、高温期にはクラウン部分を冷却することで花芽分化の促進を、低温期にはクラウン部分を加温する即効で草内の維持を可能とする技術である1)。現在までに各地域の栽培品種において一定の成果が報告されている。佐藤ら(2008)は「福岡60号」を供試したクラウン加温栽培において、施設内最低温度を10℃より低く4℃としても従来と同等以上の生育と収量が得られ、クラウン加温の適温は21℃であると報告している2)。愛知県で「ゆめのか」を対象としたクラウン加温を試験した結果、高設栽培の施設内低温温度を従来の8℃より低く5℃とした条件下で、収量の増大と暖房利用熱源の削減を確認した3)。

本研究では愛知県農業総合試験場内の苗床ピクイブ施設1棟(南北:間口6 m×幅行23 m、農薬剤)内に、クラウン加温を2016年10月26日から開始した区(10/26区)、同年11月15日から開始した区(11/15区)、同年11月29日から開始した区(11/29区)、クラウン加温を施さなかった区(無加温区)の4区を設けて、生育と収量を比較した。

「ゆめのか」は2016年8月1日から定植までの35日間、「章姫」は2016年8月6日から定植までの30日間の短日冷凍処理後、2016年9月5日に高設栽培ベンチに設置した発泡スチロールブランク「ゆりかもBox」(トーホー工業株式会社、愛知)に栽培5 cm(ブランク当たり7株)で栽培した。給水は測試に用いたOAUVハウス5台を50 g/1000 L添加した培養液でECO.3〜1.2 μs/cmに希釈して、排液率30〜40％と一定とする日射比例比例で行った。施設内最低気温は5℃とし、亜PEに設置した toàn天井と側面を二重被覆し、灯油燃焼式温風暖房機で加温して、換気開始温度を28℃とした。また、炭酸ガスは2016年11月8日から2017年3月10日までの間、施設内気温24℃未満で700 ppm、施設内気温24℃以上32℃未満で400 ppmとなるよう施用した。

クラウン加温は、施設内に設置したボリタンク1個に溜めた100 Lの水を、農薬電子サーモノ610(日本ノーデン株式会社、東京)をパイプヒーター(株式会社八光電機製作所、東京)を用いて約35℃に加温し、この水をイチゴのクラウン部分に接するように配管したボリエチレンチューブ(株式会社土佐農機、高知)にハンディボンプP600P(株式会社日立製作所、東京)で短日循環させた。なお、クラウン加温全域のクラウン加温2017年3月17日に終了した。

施設内気温は通風筒内にセンサーを挿入したおんどよりTR-52i(株式会社ティアンドディ、長野)で10分間隔にて測定し、クラウン温度は同おんどよりセンサーを直射日光の当たらないクラウン表面に接触させ、培地温度は同じくセンサー部を地表5 cm下に埋め込み、それぞれ10分間隔で測定した。

収穫調査は1〜1.5か月に1回、開花調査は週1回、収穫調査は週2、3回行った。収穫調査は、果実重量
表1 クラウン温度、培地温度及び施設内気温

| 試験1（2016年作） | 試験区 | 試験区 | 集定項目 | 試験1（2016年作） | 試験区 | 試験区 | 集定項目 | 試験1（2016年作） | 試験区 | 試験区 | 集定項目 | 試験1（2016年作） | 試験区 |
|-----------------|--------|--------|-----------------|--------|--------|-----------------|--------|--------|-----------------|--------|--------|-----------------|--------|--------|
| 集定項目 | 試験区 | 試験区 | 集定項目 | 試験区 | 試験区 | 集定項目 | 試験区 |
| | 全日加温区 | 落葉区 | 全日加温区 | 落葉区 | 全日加温区 | 落葉区 | 全日加温区 |
| | 19.9 | 21.3 | 19.4 | 21.3 | 19.4 | 21.3 | 19.4 | 21.3 |
| クラウン温度 | 19.4 | 21.3 | 19.4 | 21.3 | 19.4 | 21.3 | 19.4 | 21.3 |
| 培地温度 | 15.7 | 17.5 | 16.2 | 17.5 | 16.2 | 17.5 | 16.2 | 17.5 |
| 施設内気温 | 15.7 | 17.5 | 16.2 | 17.5 | 16.2 | 17.5 | 16.2 | 17.5 |

注）表中の数値は期間中の測定項目の平均値を示す。

図1 草高的推移（試験1）

試験2 クラウン加温時間、加温時間帯の検討（2017年作）

試験2と同じ施設に、クラウン加温を終日行う全日加温区、4〜8時4時間区間の早朝加温区、16〜20時の4時間区間の夕方加温区と、クラウン加温をしない無加温区の4区を設け、1日のクラウン加温時間及び加温時間帯が生育に及ぼす影響を調べた。

図2 草高的推移（試験2）

試験2の期間中、加温時間帯の検討（2017年作）

試験2と同じ施設に、クラウン加温を終日行う全日加温区、4〜8時4時間区間の早朝加温区、16〜20時の4時間区間の夕方加温区と、クラウン加温をしない無加温区の4区を設け、1日のクラウン加温時間及び加温時間帯が生育に及ぼす影響を調べた。

結果及び考察
表3 クラウン加温が果品収量に及ぼす影響（試験1）

<table>
<thead>
<tr>
<th>品種</th>
<th>試験区</th>
<th>果柄数</th>
<th>果実収量（メートル）</th>
</tr>
</thead>
<tbody>
<tr>
<td>ぬやのか</td>
<td>10/26区</td>
<td>14.5</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>11/15区</td>
<td>14.5</td>
<td>13.0</td>
</tr>
<tr>
<td>ぶどう</td>
<td>10/26区</td>
<td>14.5</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>11/15区</td>
<td>14.5</td>
<td>13.0</td>
</tr>
</tbody>
</table>

注）表中の数値は、各試験において4月末までに行った収穫調査の結果を示す。同一項目内の異なる英数字はTukey-Kramer法による多重比較検定で、5％水準で有意差ありを示す。

表中に括弧付で記した数値は、各項目における無加温区に対する割合を示す。

表4 クラウン加温が果品収量に及ぼす影響（試験2）

<table>
<thead>
<tr>
<th>品種</th>
<th>試験区</th>
<th>果柄数</th>
<th>果実収量（メートル）</th>
</tr>
</thead>
<tbody>
<tr>
<td>ぬやのか</td>
<td>11/12区</td>
<td>14.5</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>12/13区</td>
<td>14.5</td>
<td>13.0</td>
</tr>
<tr>
<td>ぶどう</td>
<td>11/12区</td>
<td>14.5</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>12/13区</td>
<td>14.5</td>
<td>13.0</td>
</tr>
</tbody>
</table>

注）表中の数値は、各試験において4月末までに行った収穫調査の結果を示す。同一項目内の異なる英数字はTukey-Kramer法による多重比較検定で、5％水準で有意差ありを示す。

表中に括弧付で記した数値は、各項目における無加温区に対する割合を示す。

1 クラウン温度、培地温度の推移

試験1において、クラウン加温におけるクラウン温度は、10/26区、11/15区、11/29区で無加温区に比べて6～9℃高い19～22℃程度となり、培地温度は5～6℃ほど高い19℃程度となった（表1）。無加温区のクラウン温度は同期間中の施設内気温とほぼ同じとなった。クラウン加温をしていない期間のクラウン温度と培地温度は、試験区間で差はほとんどなく、施設内気温と同程度であった。

試験2では、クラウン温度は全日加温区で23℃となり、夕加温区、早朝加温区は14～15℃となった。培地温度は、夕加温区、早朝加温区で無加温区とほぼ同程度であった。

試験2の時間帯別のクラウン温度は、全日加温区で終日20℃以上となり、夕加温区、早朝加温区で加温時間中の16℃以上となった（表2）。

2 クラウン加温開始時期と生育・収量の関係（試験1）

両品種ともクラウン加温開始区で無加温区に比べて12月から3月にかけての草高が高くなった（図1）。一次花房、二次花房の開花は、「ぬやのか」のクラウン加温区で無加温区より早くなった（図2）。

商品果数は、「ぬやのか」のクラウン加温区で無加温区に比べて20～25％増え、商品果収量は17～19％増加した（表3）。加温区にみると、1～2月の比較的高単価な時期の果実果数が無加温区よりも70～100％多くなり、商品果収量が87～83％増加した。一方で「ちりめん」は、10/26区、11/29区で無加温区に比べて商品果収量が20％、商品果収量が14～16％増加した。時期別では3～4月の商品果数と商品果収量が増加した。11/15区は10/26区及び11/29区に異なり、12月までの商品果数が無加温区より少なく、商品果収量は収穫を通じていずれの時期においても無加温区と有意差を認められなかった。

「ぬやのか」では最も早くクラウン加温を始めた10/26区で二次花房の開花が他の区に比べて約1週間早く進んだ。二次花房の開花は他のクラウン加温区に比べ同程度に進み、商品果収量が最も向上したと見られるが、クラウン加温開始は10月下旬に適度と判断した。

「ちりめん」は3～4月の商品果数と商品果収量が増加し、「ぬやのか」とは違う時期にクラウン加温の収穫への効果が現れることを示唆された。本試験では「ぬやのか」、「ちりめん」のクラウン加温による生育促進効果が得られ、とくに「ぬやのか」に対しては「ちりめん」に比べて比較的高単価な1～2月の収穫量が増えたことから、「ちりめん」より効率的に高収益を上げる可能性が考えられた。
表5 展開数葉と各花房の着花数及び花房間接数（試験2）

<table>
<thead>
<tr>
<th>品種</th>
<th>試験区</th>
<th>12月7日</th>
<th>12月1日</th>
<th>12月24日</th>
<th>花房間隔数</th>
<th>円筒花数</th>
<th>1次花房数</th>
<th>2次花房数</th>
<th>著花数</th>
</tr>
</thead>
<tbody>
<tr>
<td>ゆめのか</td>
<td>全加温区</td>
<td>8.5 a</td>
<td>12.6 a</td>
<td>10.8 a</td>
<td>6.7 a</td>
<td>6.5 b</td>
<td>2.3 a</td>
<td>21.9 a</td>
<td>31.1 a</td>
</tr>
<tr>
<td>ゆめのか</td>
<td>クラム加温区</td>
<td>8.9 a</td>
<td>12.1 b</td>
<td>15.7 b</td>
<td>7.0 a</td>
<td>6.8 a</td>
<td>2.3 a</td>
<td>22.1 b</td>
<td>18.6 b</td>
</tr>
<tr>
<td>無加温区</td>
<td>8.6 a</td>
<td>12.0 a</td>
<td>15.6 b</td>
<td>6.9 a</td>
<td>6.5 b</td>
<td>2.3 a</td>
<td>22.3 a</td>
<td>18.4 a</td>
<td>9.8 a</td>
</tr>
<tr>
<td>丸</td>
<td>全加温区</td>
<td>8.7 a</td>
<td>12.7 a</td>
<td>16.6 b</td>
<td>6.7 a</td>
<td>5.2 a</td>
<td>2.4 a</td>
<td>24.1 a</td>
<td>22.6 a</td>
</tr>
<tr>
<td>丸</td>
<td>クラム加温区</td>
<td>9.5 a</td>
<td>12.9 a</td>
<td>16.0 b</td>
<td>6.6 a</td>
<td>5.3 a</td>
<td>2.5 a</td>
<td>23.4 a</td>
<td>21.8 a</td>
</tr>
<tr>
<td>丸</td>
<td>無加温区</td>
<td>8.7 a</td>
<td>12.4 ab</td>
<td>15.6 b</td>
<td>6.7 a</td>
<td>5.2 a</td>
<td>2.3 a</td>
<td>26.7 a</td>
<td>21.3 a</td>
</tr>
</tbody>
</table>

注）表中の同一項目における異なる英文字は、Tukey-Kramer法による多重比較検定において5％水準で有意差を認めた。

3 クラウン加温期間、加温時間帯と生育・収量の関係
（試験2）
両品種共に、12月から1月にかけて全日加温区の栽培が他区より高くなり、夕方加温区と早朝加温区の現在は無加温区と比べ等しい（図2）。全日加温区の一次花房、二次花房、無加温区の開花はより早く進み、早朝加温区と夕方加温区の開花は無加温区とほぼ同じしか遅くなかった（データ略）。[「ゆめのか」の商品果収量は、全日加温区で無加温区より16％増加し、1～2月の商品果数が45％、商品果収量が48％増加した（図4）。一方で「草 ler」は、クラウン加温区で無加温区と同程度の収量であったが、全日加温区の3月の商品果数と果品果収量、無加温区より増加した。

4まとめと残された課題
本研究の結果、愛知県内で普及している高設栽培のブランクにクラウン温度制御設備を設置し、10月末から2月末までの冬季に「ゆめのか」のクラウン分を約20℃で加温することにより、冬季の草高の増大と繁殖の促進、二次花房の開花の花房の開花促進に効果があると考えられた。商品果収量は、無加温区に比べて16～19％増加し、とりわけ1～2月は48～83％増加した。さらに、2か月の試験においていずれの年次においても「ゆめのか」では1～2月、「草 ler」では3～4月の商品果数と商品果収量が増加したことから、クラウン加温の収量に対する効果はこれら2品種においては異なる時期に得られることが明らかとなった。「草 ler」と比較して「ゆめのか」は高収量期に当たる1～2月の収量が増加したことから、クラウン加温は「ゆめのか」において冬期の効率的な収量増を期待できる技術と判断した。ただし、本研究でクラウン加温を開始した10月末は、一次花房の花芽分化期に相当する。花芽分化前のクラウン加温を開始すると、高温により花芽分化が遅れる可能性があるため、10月末からのクラウン加温は、一次花房の花芽分化を検証で確認した後に始めるのが適当である。

本研究では、加温のためにクラウン部分にポリエチレンチューブ設置し、温水を手動循環させた。この方法では湿温作成と湿温循環に必要な熱量と電力量が増収をもたらした（データ略）。試験2では、加温時間を削減した夕方加温区、早朝加温区を設けたが、全日加温区に匹敵する生育促進効果は得られなかった。今後、生産現場で活用できる技術を確立するためには、安価で効率的な加温方法を引き続き検討する必要がある。

また、試験1、2の収穫期間を通じて、糖度はクラウン加温の有無で差は認められなかった（データ略）。この結果から20℃程度のクラウン加温は果実品質への影響が少なく、収量の向上に貢献すると考えられるが、コスト削減の課題解消やさらに商品質のイチゴ生産に向けては、クラウン加温とともに肥料管理、施設温度管理、炭酸ガス施用などの改善を組み合わせた高収益栽培技術の確立を目指すべきである。

引用文献
1. 沖村誠, 増田秀一, 東谷正弘, 北谷幸恵, 光後弘明, 北島伸之, 佐藤公洋, 伏原要, 促進イチゴ栽培で早期収量の増加と収穫の平準化が可能なクラウン温度制御技術. 九州沖縄農業研究成果報告. 23 (2006)
2. 佐藤公洋, 北島伸之, 沖村誠, イチゴ促進栽培におけるクラウン部高部加温が生育、収量に及ぼす影響と熱量節減の効果. 園学研, 7 (別2), 269 (2008)