六フッ化硫黄を指標とした山形県七五三掛地すべり地にお ける地下水の年代推定

誌名	農業農村工学会論文集
ISSN	18822789
著者名	土原,健雄
	奥山,武彦
	吉本,周平
	白旗,克志
	石田,聡
発行元	農業農村工学会
巻/号	82巻6号
掲載ページ	p. 413-422
発行年月	2014年12月

農林水産省 農林水産技術会議事務局筑波産学連携支援センター

Tsukuba Business-Academia Cooperation Support Center, Agriculture, Forestry and Fisheries Research Council Secretariat

六フッ化硫黄を指標とした山形県七五三掛地すべり地 における地下水の年代推定

土原健雄* 奥山武彦** 吉本周平* 白旗克志* 石田 聡*

* (独) 農業・食品産業技術総合研究機構 農村工学研究所,〒305-8609 茨城県つくば市観音台 2-1-6
** 山形大学農学部,〒997-8555 山形県鶴岡市若葉町 1-23

要 旨

山形県七五三掛地すべり地において、地下水の流動状況を把握するため、六フッ化硫黄(SF₆)、フロン類(CFCs)、水素・酸素安定同位体比(δ D, δ ¹⁸O)、放射性同位体トリチウム、溶存イオン濃度を測定し、地下水の年代推定を行った.浅部地下水の年代推定にはSF₆、深部の古い地下水にはトリチウムが有用であった.年代推定結果と他の水質要素の関係性のうち、特に(Ca²⁺+Mg²⁺)/HCO₃-比は古い地下水ほど低下する傾向にあり、年代推定結果の検証に適用可能である.また、地形・地質情報に加え、地下水の δ ¹⁸O 分布は、多層的な地下水流動機構を確認し、地すべり地へ異なる涵養域から年代の異なる地下水が流入することを示す上で有効である.本研究で適用した環境トレーサーを組み合わせて用いることで、地すべり地において対策工からどのような地下水を排除しているか、滞留時間、涵養年代による地下水の分類が可能である.

キーワード:地すべり,地下水,六フッ化硫黄,環境同位体,涵養年代,滞留時間

1. はじめに

地すべり等防止法(昭和33年)により指定され,農村振 興局が所管する地すべり防止区域は、区域数 1,963、面積 11.2 万 ha に及んでおり(2014 年 1 月時点),防災対策は重 要な課題となっている.地すべり発生の要因は地盤の脆弱 性による「素因」と大雨や地震等による「誘因」とに分け られ、地形・地質といった前提条件である素因に外的因子 である誘因が加わり、斜面の不安定化が生じる.誘因であ る豪雨や融雪による地下水供給の増加は、風化過程を通し て地盤構成物質の変質・強度の劣化と地下水の局所的集中 による崩落の力学的促進(吉岡, 1990)として地すべり発 生に大きく影響する.地すべり地の斜面の安定性を評価す るためには、地下水の水理的性質である間隙水圧の分布や 変化を正確に捉える必要があることから(松浦, 2012),地 下水の起源や地下水の流入・流動過程といった詳細な水文 情報は重要である.しかし、過去の運動により地すべり地 塊が攪乱され透水性が著しく不均質に分布するなど(吉松, 1991),地すべり地の地下水の流れは単純ではない(川上, 2009).

水循環過程の把握に適用され、その有効性が多くの研究 で確認されている環境同位体等の環境トレーサーは、地下 水流動場が複雑で地形等から流動の推定が困難な地すべり 地において有効な調査手法と考えられる.地すべり地では、 溶存イオン濃度による地下水流動過程の推定(例えば、 Guglielmi et al., 2000;相楽ら、2005)、水素・酸素安定同 位体比(δD, δ¹⁸O)分布による地下水の分類(例えば、川 原谷ら、2000;鈴木・佐藤、2002;Peng et al., 2010)といった研究がある.さらに、地下水がどの程度の時間をかけて流動するかといった滞留時間を解析することで、地下水流動経路推定の信頼性が向上する.地すべり地においては、放射性同位体トリチウム(T;³H)により推定される滞留時間を考慮して地下水流動を解析した既往の研究がある

(例えば,吉岡ら,1988; Mikoš et al., 2004; Peng et al., 2007). しかし,1960 年代に降水中の濃度がピークに達し,現在では自然発生レベルまで濃度低下したトリチウムの時間分解能では,過去25 年以内に涵養された地下水の年代を識別するのは難しくなっている(浅井・辻村,2010).

一方で、工業用に用いられる不活性ガスで、近年大気中 の濃度が上昇しているクロロフルオロカーボン類 (CFCs), 六フッ化硫黄 (SF₆)を指標として地下水の年代を推定する 研究が進められている (IAEA, 2006). 国内では浅井・辻 村(2010)が適用性を示したことを端緒に、研究事例が増 えつつある (例えば, Asai et al., 2011; Kusano et al., 2014). これらの不活性ガスは、数年~数十年単位の比較的短い滞 留時間を持つ若い地下水への適用が可能であることから、 平野部の深層地下水と異なり、比較的地下水流動が活発な 斜面変動場の地下水の年代推定に有用と考えられる.しか し、地すべり地については、末峰ら(2012)の報告がある のみで適用は極めて限定的であり、知見の蓄積、指標とし ての有効性の確認が必要である.特に深部のすべり面にお いて発生する大規模な変位を対象とする場合、作用する地 下水の涵養域は地すべりブロック上流域まで広範囲に及ぶ 可能性があり、滞留時間や涵養年代といった時間情報は地 下水の影響圏を定める上でも有用な情報となる.

本研究では、2009年に地すべりが発生し現在も対策が継続されている山形県鶴岡市の七五三掛地すべり地を対象にしている.地すべり発生の誘因となる地下水の流動状況を把握するため、地下水中の主要溶存イオン濃度、CFCs、SF₆、 δ D、 δ ¹⁸O、放射性同位体トリチウムを測定し、地下水涵養年代の推定を行い、地すべり地内の地下水を分類するとともに、用いた環境トレーサーの適用性を評価した.

2. 対象地概要

2.1 地形及び地すべり活動

対象とした七五三掛区域の地すべり地は、山形県鶴岡市 (旧朝日村) に属し、標高 1,984m の月山を頂点とする赤 川流域内の丘陵地に位置する (Fig.1). 凹地形の地すべり 地帯である七五三掛区域を含む大網地域の丘陵は、比較的 緩やかな傾斜 (3~15 度程度) で古くから水田地帯として 開かれていた (経済企画庁, 1964). 当該地すべり地は, 2009 年の融雪期に区域南西側の地すべりブロックの活動が活発 化し,緊急の対策工事が実施された. 活動の沈静化後、東 側に隣接する大規模な地すべりブロック (Dブロック;長 さ 1,100m,幅 700m) (Fig.1)の活動が確認され,現在農林 水産省により地下水排除工による対策が実施されている. 既往の報告 (寺田ら, 2010) によれば、Dブロックのすべ り面の深度は 120m に達し、継続的な地すべりの活動が確 認されている.

2.2 地質

本地域では、新第三紀中新世に安山岩質、流紋岩質岩石 が噴出し、これらの溶岩、集塊岩及び凝灰質岩石が先第三 紀の基盤岩を覆って堆積するとともに、砂岩、泥岩及びこ れらの互層が発達し、その上層を第四紀の火山活動に起因 する火山灰砂、泥流が覆っている(経済企画庁、1964).地 すべりブロックでは、全般的に固結度が高い凝灰角礫岩を 不動層として、上位に向かって凝灰岩薄層を含む泥岩、粗 粒玄武岩が層状に分布する(Fig.2).泥岩・砂岩層中の凝 灰岩や泥岩に破砕・粘土化が進行し、すべり面が形成され ており、末端付近では緩い受け盤となっている。全体に風 化が進んでいる粗粒玄武岩層は透水性が比較的高く、泥岩 層は透水性が低い、粗粒玄武岩、泥岩の層厚は場所により 異なり、地すべりブロック南東部は泥岩層が厚く分布する (Fig.1).

3. 研究方法

3.1 調査地点及び調査方法

地すべりブロック内での地下水採取地点を Fig.1, 観測施 設の諸元を Table 1 に示す. Fig.1 中には,地点によって異 なる分析対象項目を,凡例を区別して表示している.地下 水の涵養年代を推定するため,観測孔 2 地点 (OW1, 2) において,主要イオン,δD,δ¹⁸O,トリチウムを対象,集 水井 3 地点 (CW1~3), ディープウェル 4 地点 (DW1~4) において, 主要イオン, δD , $\delta^{18}O$, トリチウム, CFCs, SF₆

Fig.1 七五三掛地すべり周辺地域の地すべり地形分布(防災科学 技術研究所(2009)より作成)(a)及び地すべり地での地 下水採取地点位置図(土原ら(2014a)より作成)(b)

Landslides distribution around the Shimekake landslide based on NIED (2009) (a) and location map of groundwater sampling points in the landslide block based on Tsuchihara et al. (2014a) (b)

Table 1 観測孔,集水井,ディープウェルの諸元 Specifications of observation wells, catchment wells and deep wells

-			-		
	名称	標高	開口深度	ポンプ深度	備考
		(m)	(m)	(m)	
_	OW1	342	99~109		
	OW2	334	0~90	_	
	OW3	320	101~106	_	
6 11	OW4	331	40.2~44.1	_	
観	OW5	345	0~35		
例	OW6	317	0~17	_	
10	OW7	377	52~60	_	Р
	OW8	404	88.3~91.3	_	Р
	OW9	405	45~50	_	J
	OW10	384	28	_	G
	CW1	268	18*	_	
集	CW2a	259	15*		
水	CW2b	259	15*		
井	CW3a	315	47*	_	
	CW3b	315	47*		
- ウ <i>ギ</i>	DW1	341	22~110	74.3	
シノエイ	DW2	299	22~51	44.8	
ループ	DW3	332	22~110	100.0	
	DW4	284	$22 \sim 100$	94.0	

*:集水ボーリングの孔口深度

P: 揚水試験実施時に採水、J:JFT 実施時に採水

G: 孔内傾斜計ガイドパイプ破損部から採水

を対象とし、2013年11月14日に地下水の採取を行った. 観測孔においては井戸用採水器により採水を行った.集水 井においては集水ボーリングより排出される地下水、ディ ープウェルにおいては水中ポンプより排出される地下水を 採取した.集水井では複数ある集水ボーリングのうち、流 量の大きい孔を選択して採水し、CW1は1本、CW2、CW3 は2本の孔(それぞれ CW2a, b 及び CW3a, b) を対象と した. なお, 不活性ガス (CFCs, SF₆) の分析のためには, 現在の大気に含まれる不活性ガスが地下水中へ溶存するこ とを避ける必要がある.このため、ディープウェルでは排 水された地下水が空気に接触する前に、排水パイプ内から チューブポンプを用いて採水した.集水井内の集水ボーリ ングでは孔口を閉塞し、孔内の大気を脱気してから採水を 実施した. 観測孔は孔径が 50mm と小さく, また継続する 地すべり活動による孔管の曲がりの可能性があるため、ポ ンプを挿入しての不活性ガス用の採水は実施しなかった.

地下水の深度別の δD , $\delta^{18}O$ の分布を把握するため,開 口区間の限られた観測孔 (OW1, 3, 4)及び全区間が開口 しているが深度 35m 未満の浅い観測孔 (OW5, 6),掘削時 に開口区間を限定して揚水試験,JFT 試験を実施していた OW7~9,孔内傾斜計のガイドパイプ破損部からのみ地下 水流入がある OW10より採水を実施した.これらの採水は 2011 年 10 月~2013 年 11 月に実施し,OW1, 3, 4, 5 につ いては複数回の調査を行った.

3.2 分析項目及び分析方法

採取した試料水について,主要イオン, δD, δ¹⁸O, トリ チウム, CFCs, SF₆の分析を行った. それぞれの特性及び 分析方法を次項に示す. また,電気伝導度 (EC), pH, 水 温は東亜 DKK 社製 WM-32EP, 溶存酸素量 (DO) は HACH 社製 HQ30d,酸化還元電位 (ORP) は東亜 DKK 社製 RM20P を使用し,採水直後に現地において測定を行った.

3.2.1 主要イオン

陽イオン (Na⁺, K⁺, Mg²⁺, Ca²⁺), 陰イオン (NO₃⁻, Cl⁻, SO₄²⁻)をイオンクロマトグラフ (東亜 DKK 社製, ICA2000) により測定を行った. 重炭酸イオン (HCO₃⁻) のみ滴定法 (pH4.8 酸消費量) により測定を行った.

3.2.2 水素·酸素安定同位体比

自然界における D (²H), ¹⁸O の存在率は非常に小さいた め, 測定値は VSMOW (Vienna Standard Mean Ocean Water) とよばれる標準海水の同位体比からの千分率偏差(‰)と して、 δ D、 δ^{18} O と表記される. δ D、 δ^{18} O の測定は、それ ぞれ水素、二酸化炭素ガスを試料瓶の気相部分に加え、水 とガスを同位体交換平衡の状態にさせ、平衡ガスを測定し、 ガスと平衡状態にある水の安定同位体比を逆算する. 得ら れた平衡ガスを Finnigan 社製 GAS BENCH II により、安定 同位体比質量分析計 (Thermo Fisher Scientific 社製, DELTA V Advantage) に導入し、測定を行った. δ D、 δ^{18} O の測定 誤差はそれぞれ 2‰, 0.1‰である.

3.2.3 放射性同位体トリチウム

自然界のトリチウムは、宇宙線の中性子と大気中の窒素 原子との衝突による核反応により生成されているが、1952 年に開始された大気中での熱核爆発実験の結果、降水中の トリチウム濃度は急激に増加し、北半球では1963年にピー クに達した、その後、大気中での核実験の中止とともに、 トリチウム濃度は半減期(12.4年)に従って指数関数的に 減少し、現在ではほぼ自然発生レベルに回復している、古 い地下水と新しい地下水の混合がないと仮定した場合、地 下に浸透した水は新たにトリチウムが加わることがなく、 半減期に従い減衰するため、古い水ほどトリチウム濃度は 小さい.この特性を利用し、地下水の年代や流速を推定す る研究、涵養速度に関する研究が行われている(今泉ら、 2002). 採取した試料は、固体高分子電解質型自動トリチウ ム濃縮装置を用いて電解濃縮を行い、蒸留精製した試料を 液体シンチレーションカウンタ (ALOKA 社製, LSC-LB5) により測定した.検出限界は0.03Bq/Lであり,濃度の単位 として 1TU (Tritium Unit = 0.12Bq/L) を用いる.

3.2.4 不活性ガス

CFCs は、工業用、冷却材等として 1930 年代より広く用 いられてきた不活性ガスで、CFC-12 (CF₂Cl)、CFC-11 (CFCl₃)、CFC-113 (C₂F₃Cl) がある.大気中の CFCs 濃度 は、1950 年頃より上昇し、温室効果ガスとして規制された 後の 1990 年代より低下している.これらの大気濃度の履歴 を利用して、1950 年代以降の地下水の年代推定に適用され てきている (例えば、Busenberg and Plummer、1992; Plummer et al., 2000). SF₆ は高電圧スイッチの絶縁体や変圧器に用 いられる不活性ガスであり、1950 年代以降、現在も大気中 の濃度は上昇しており、CFCs 同様、地下水の年代推定へ の活用が可能である. CFCs、SF₆の分析は Purge and Trap GC-ECD 法(浅井・辻村、2010)に従い、試料水中の CFCs、 SF₆ を純窒素のバブリングによって追い出し、冷却トラッ プに捕集後、ECD 検出器付きガスクロマトグラフ(島津製 作所製, GC-8A) により測定した. 既往の研究(例えば, Asai et al., 2011; Kusano et al., 2014) に従い,地下水中の CFCs は pg/kg, SF₆は fmol/kg,大気に換算した濃度は pptv で表示する. CFC-12, CFC-11, CFC-113, SF₆の測定誤差 は,それぞれ 1.0%, 1.2%, 2.0%, 3.0%である.

3.3 不活性ガスを用いた年代推定

測定された地下水中の CFCs, SF₆濃度を地下水涵養時の 大気中の CFCs, SF₆濃度(大気換算濃度)に補正し,過去 の大気中の CFCs, SF₆濃度の履歴と比較することで,地下 水が涵養された年代を推定する.大気圧中のガスの地下水 への溶解がそのガスの大気圧中の分圧に比例するという, ヘンリーの法則に基づき,水中の溶存ガス濃度は以下の式 で表される (IAEA, 2006).

$$C_i = K_H p_i \tag{1}$$

ここで、 C_i は水中での CFCs、SF₆ 濃度 (mol/kg)、 K_H はヘンリーの法則における定数 (mol/(kg・atm)) である. p_i は大気中の CFCs、SF₆の分圧 (atm) を示しており、次式で定義される (IAEA、2006).

$$p_{i} = x_{i} \left(P - p_{\rm H_{2}O} \right) \tag{2}$$

ここで, x_i は乾燥大気中での CFCs, SF₆のモル分率であり, 大気換算濃度に相当する. Pは全大気圧(atm), pHoは水蒸 気の分圧 (atm) を示す. それぞれの導出方法, 使用した係 数についての詳細は IAEA (2006) を参照されたい. P は標 高, K_H, p_{HO} は温度に依存することから, 涵養時に地下水 に溶解する CFCs, SF6濃度は、大気中のガス濃度だけでな く, 涵養時の気圧, 温度の影響を受ける. なお, K_Hは塩分 濃度の関数でもあり、海水を対象とするなど非常に塩分濃 度が高い場合に補正が必要となるが、陸水を対象とした場 合は溶解度に与える影響は極めて小さいため、本研究では 考慮していない、地下水の涵養標高については、浅井・辻 村(2010)は湧水の水温と標高の関係式から推定を行って いる.本研究では、標高が高くなるほど δD, δ¹⁸O が小さ くなる高度効果を利用し、標高が異なる集水域より採取し た渓流水から求めた δ¹⁸O の高度効果; 0.154‰/100m(土原 ら,2014b)を用いて推定した. 涵養温度については, 湧水 温を用いる手法(浅井・辻村, 2010), 地下水中の希ガス(Ne, Ar 等) 濃度から推定する手法が適用されているが (例えば, Koh et al., 2007), 本研究では推定された涵養標高の平均気 温を用いた.任意地点の平均気温は、基準となる地点の気 温から標高の変化に伴う気温減率0.00649℃/mにより求め た. 基準となる地点の気温として, アメダス鶴岡(標高 16m) の1977~2013年の気温の平均値を用いた.

本研究では、後述するように CFCs ではなく、SF₆を地下 水の年代推定の指標として適用した.SF₆を指標とする場 合、考慮すべき要因として、岩石からの自然由来の SF₆の 付加、地下水涵養時の過剰大気の混入、大都市近傍での大 気中の SF₆濃度の上昇がある.いずれも地下水への溶存 SF₆ を増加させ、地下水の年代を若く推定する方向へ作用する. 複数の岩石・鉱物の SF6 含有量を調査した Busenberg and Plummer (2000) によれば、本地域の帯水層である粗粒玄 武岩をはじめとした苦鉄質岩石には SF6はほとんど含まれ ない. 泥岩や凝灰岩についての記載はないが、 蛍石や花崗 岩などのケイ素を多く含む火成岩に SF6含有量が多く (Busenberg and Plummer, 2000),本地すべり地の帯水層に おいては自然由来の SF6の影響は極めて小さいと判断し た. 過剰大気の地下水への混入量は、地下水中の希ガス濃 度から推定する手法が提案されているが (例えば, Goody et al., 2006; Friedrich et al., 2013), 本研究では希ガス濃度等 の測定を行っておらず、本地域での過剰大気の混入量は不 明である. アメリカの典型的な地下水における過剰大気の 混入量 1cm³/kg の場合,過剰大気を考慮しない場合に比べ て、地下水の涵養年代が1970~1990年であれば1~2年、 1990 年以降であれば 1~2.5 年,滞留時間を過小評価するこ とになる (Busenberg and Plummer, 2000). これより,本研 究で得られた年代推定結果は、1~2.5年程度の誤差を含み、 推定された滞留時間は下限値として捉えることになる. ま た、大都市近傍では大気中の SF₆濃度が上昇する傾向にあ るが (Santella et al., 2008), 本研究の対象地は中山間地に 位置しており、都市域の影響は小さい(Asai et al., 2011) と判断した.解析時の日本の平均的な大気中 SF₆濃度とし ては、アメリカ大気海洋庁が公表する値に1.15倍した値(浅 井ら, 2011) を用いた.

後述する深度別の地下水の δ^{18} O分布より,地すべりブロ ック内の地下水は多層的な流動機構を有すると考えられ た.このため、地すべりブロック内の地下水はピストン流 により流動すると仮定し、Busenberg and Plummer (2000) と同様の方法により年代推定を行った.つまり、大気中の SF₆ 濃度の履歴と試料の SF₆ 大気換算濃度が合致する点を その地下水の涵養年代とみなし、涵養年代から現在までの 時間を滞留時間と推定した.

4. 結果

4.1 主要イオン

年代推定を実施した地下水のトリリニアダイアグラム, 水質分析結果をそれぞれ Fig.3, Table 2 に示す. OW2 は 0 ~90m の深度が開口する観測孔であり,孔内の地下水は混 合が生じていると推測され,水質は Ca-Cl 型と Ca-HCO3型 の中間的な組成である. OW2 は,過去に塩水トレーサー試 験を実施した孔であるため,残存したトレーサーの影響に より,塩化物イオンがやや卓越している.一方,開口区間 が 99~109m と限定される OW1 は極端な Na-HCO3型の水 質組成を示し,深層地下水に区分される.ディープウェル から採水した地下水は,地点によりやや異なった組成では あるが,区分としては Ca-HCO3型であり,浅層地下水の水 質組成を示している.集水井は地点によって異なり,CW3 が Ca-HCO3型に区分されるのに対し,CW1,2は中間型~ Na-HCO3型に区分される.また,硝酸態窒素(NO3~N) 濃度はいずれの地点も低く,1.99mg/L以下の値であった.

Fig.4 地下水の $Ca^{2+}+Mg^{2+}$ と HCO_3^{-} 当量濃度の関係 Relationship between $Ca^{2+}+Mg^{2+}$ and HCO_3^{-} equivalent concentrations in groundwater

Table 2	涵養年代の推定を実施した地下水の水質分析結果
Hydro	ochemical survey results of age-dating groundwater

地点名	EC	pН	ORP	DO	水温	$\delta^{18}O$	δD	Т	CFC	s (pg/	kg)	SF ₆	SF ₆ (EA)	涵養年	滞留時間
	(mS/m)		(mV)	(mg/L)	(°C)	(‰)	(‰)	(TU)	-12	-11	-113	(fmol/kg)	(pptv)	(年)	(year)
OW1	63.3	9.27	50	1.44	9.5	-10.58	-63.26	ND	-	-	-	-	-	-	-
OW2	35.2	7.07	166	10.29	5.8	-9.40	-55.12	2.69	-	_	-	-	_	-	—
CW1	29.8	7.40	-8	6.19	10.3	-9.53	-56.10	3.45	184	264	37	1.71	4.63	1997	15.8
CW2a	34.0	8.71	-78	3.78	10.2	-9.64	-56.15	3.37	125	181	21	1.84	4.95	1999	14.4
CW2b	28.3	7.04	-25	3.65	9.4	-9.68	-56.32	3.13	106	139	16	1.76	4.72	1998	15.5
CW3a	14.7	7.95	45	10.59	9.0	-9.78	-58.06	3.32	302	682	77	2.96	7.85	2009	3.8
CW3b	16.8	8.01	85	10.58	9.1	-9.75	-55.25	3.03	295	516	64	2.72	7.22	2007	5.8
DW1	21.7	8.17	192	2.46	10.6	-9.74	-55.94	2.48	198	130	19	2.17	5.76	2002	11.1
DW2	20.5	8.19	167	7.26	10.4	-9.73	-56.52	3.52	272	485	55	2.78	7.40	2008	5.2
DW3	16.5	8.20	176	9.41	10.3	-9.74	-58.64	2.48	204	295	32	2.07	5.52	2001	12.1
DW4	15.8	7.51	289	4.57	10.7	-9.83	-57.06	2.79	318	591	68	2.87	7.57	2008	4.7
	1 - 10 -	the state	*	the Cried DD		10 111				1. 10					

※EA:大気換算濃度,涵養年及び滞留時間:SF。より推定,ND:検出限界以下,-:未測定

Table 3	観測孔で採取した地下水の EC,	δ ¹⁸ O,	δD
EC, δ ¹⁸ 0	D and δD in groundwater of observation	tion we	lls

			10	
地点	採水日	EC	δ18Ο	δD
		(mS/m)	(‰)	(‰)
OW1	2011/10/04		-10.51	-64.62
	2012/08/08	62.5	-10.80	-63.99
	2013/01/29	61.9	-10.48	-62.50
	2013/05/21	62.6	-10.71	-68.45
	2013/09/23	64.8	-10.84	-66.38
	2013/11/15	63.3	-10.58	-63.26
OW2	2013/11/14	35.2	-9.40	-55.12
OW3	2013/05/21	75.5	-10.81	-65.40
	2013/09/23	64.6	-10.55	-62.98
OW4	2011/10/04	-	-9.69	-55.65
	2012/08/08	16.6	-9.85	-57.39
	2012/11/16	14.4	-9.76	-54.68
	2013/01/22	12.6	-9.71	-56.02
	2013/09/23	14.1	-9.73	-55.88
OW5	2011/11/17	8.6	-9.32	-52.32
	2012/11/16	7.9	-9.39	-48.59
OW6	2012/11/16	8.4	-9.16	-52.56
OW7	2012/10/31	20.0	-9.65	-52.31
OW8	2012/09/14	39.7	-9.15	-50.01
OW9	2012/09/28	11.2	-9.65	-54.79
OW10	2012/11/16	73.0	-9.62	-56.10

硬度(Ca²⁺+Mg²⁺)と重炭酸イオン(HCO₃)当量濃度の 関係を Fig.4 に示す.長溝(1979)の区分によれば,硬度 と重炭酸イオンが 0.7meq/L 以上で,重炭酸イオンの比率が 高い場合,その地下水は深層地下水に区分される.塩水ト レーサー試験の影響が残る OW2 は硬度と重炭酸イオンの 1:1のラインから外れた位置に分布する.CW3 はほぼ1: 1ライン上に分布し,ディープウェル,CW1,CW2,OW1 の順に重炭酸イオンの割合が高くなり,より深層地下水の 性質に近づくことがわかる.

4.2 水素·酸素安定同位体比

溶存イオン分布から深層地下水と考えられる OW1 の地 下水は相対的に低い δD , $\delta^{18}O$ を示すのに対し,全開口の 観測孔である OW2 は OW1 より高い値を示す.ディープウ ェル,集水井は地点によるバラつきが小さく, δD は-58.64 ~-55.25‰, $\delta^{18}O$ は-9.83~-9.53‰の範囲に分布する (Table 2). 観測孔で採取した地下水の δD , $\delta^{18}O$, EC を Table 3, 異なる深度で採取した地下水 (OW1, 3~10) の $\delta^{18}O$ と EC の分布を Fig.5 に示す. 30m 未満の浅い観測孔は全開口で あるが,地表面付近の浅層地下水とみなし,図では採水深

Fig.7 地下水の SF₆大気換算濃度及び大気中の SF₆, CFCs 履歴 SF₆ equivalent air concentrations of groundwater and historical fluctuation of SF₆ and CFCs concentrations in atmosphere

度を地下水の深度としている. C ブロックに位置する OW8 は深度に比して高い δ^{18} O を示した. また孔内傾斜計のガイ ドパイプ破損部から流入する地下水を採取した OW10 は高 い EC を示すが、 δ^{18} O は他の地点と同様の傾向を示した. それ以外の点については、地下水深が深くなるほど δ^{18} O は 低下, EC は増加する傾向を示した. また δ D は-68.45~ -48.59‰を示し、 δ^{18} O 同様、深度が大きくなるにつれて δ D は低下する傾向を示した.

4.3 放射性同位体トリチウム

集水井, ディープウェル, OW2 の地下水のトリチウム濃 度は, 2.5~3.5TU と自然発生レベルに近い値であり(Table 2), 比較的近年に涵養された新しい地下水であることを示 している.しかしながら,トリチウム濃度のみでは,それ 以上の時間分解能での涵養年代の推定は困難である.一方 で,OW1 は検出限界以下であり,1950 年代の地表での原 水爆実験以降に急増した降水中のトリチウム濃度の影響を 受けていない.これより,OW1 の地下水は,少なくとも 60 年以上前,つまり1950 年以前の降水により涵養された 古い地下水であるといえる.

4.4 不活性ガス

地下水の CFCs 濃度及び CFC-11/CFC-12 比を Fig.6 に示 す. CFCs は好気条件下では基本的には安定しているが、 嫌気条件下では微生物による分解の影響を受ける(IAEA, 2006). CFC-11, CFC-113 が CFC-12 より影響を受けやすく (例えば, Sebol et al., 2007; Horneman et al., 2008), 微生 物による分解が生じた場合、影響を受けやすい CFC-11 の 濃度が低下し、CFC-11/CFC-12 比は低下する. 大気中の CFC-11 は CFC-12 の約半分の存在量であるが (Fig.7), CFC-11 は溶解度が高く,十分に溶解平衡に達したと考えら れる海水中のCFC-11/CFC-12比は約2である(Fine, 2011). 本地すべり地の地下水の CFC-11/CFC-12 比は 0.7~2.3 の範 囲にあり、平均1.5と低い値を示す(Fig.6).特にDW1の 地下水は, DO が 2.46mg/L と低く微生物分解の影響の大き い嫌気状態と考えられ、CFC-11/CFC-12 比は最も低い値を 示した.これらの結果より、本研究の対象地において CFCs を指標とした場合、地下水の涵養年代推定結果に大きな誤 差が含まれると判断し、本論文では SF6を用いた年代推定 結果について述べる.

採取した地下水の SF₆ 濃度を大気換算濃度に補正した値 と大気濃度の比較を Fig.7 に示す.大気換算濃度は 4.63~ 7.85pptv であり, CW1 が最も低く, CW3a が最も高い値を 示し,いずれの地点も現在の大気中の SF₆濃度よりも低い 値を示した.

4.5 地下水の年代推定

SF₆により推定された滞留時間はおよそ 4~16 年,涵養 年代は 1997~2009 年であった(Table 2). Fig.8 に地下水の 採取深度と涵養年代の関係を示す.なお,ディープウェル は採取深度が限定されていないことから Fig.8 中では開口 区間を表示している.ディープウェルは複数の深度の地下 水が混合していると考えられることから,ディープウェル の地下水の年代については,見かけの涵養年代及び滞留時 間であることに留意が必要である.集水井では CW1,2は 浅いが古い地下水であり,CW3 は CW1,2 より深いが相対 的に新しい地下水である.ディープウェルでは,開口区間 が短く,浅い DW2 は滞留時間が 5.2 年と若い地下水である

Relationship between groundwater sampling depths and date of recharge

Fig.9 地下水の (Ca²⁺+Mg²⁺)/HCO₃⁻当量比と涵養年代の関係 Relationship between (Ca²⁺+Mg²⁺)/HCO₃⁻ equivalent ratio of groundwater and date of recharge

のに対し,深いディープウェル DW1, 3, 4 はそれぞれ異なった涵養年代(2001~2008年)を示した.

長溝(1979)が整理した硬度と重炭酸イオンによる区分 に着目し、Fig.9 に硬度(Ca²⁺+Mg²⁺)とHCO₃⁻イオンの当 量比と推定された地下水涵養年代の関係を示す.地下水の 涵養年代と(Ca²⁺+Mg²⁺)/HCO₃⁻比には正の相関(*R*²=0.58)が 見られ、(Ca²⁺+Mg²⁺)/HCO₃⁻比は涵養年代が古いほど小さく なる傾向を示す.トリチウム濃度から、少なくとも 1950 年代以前に涵養された地下水と推定された OW1 の (Ca²⁺+Mg²⁺)/HCO₃⁻比は 0.01 と極めて低い値を示した (Fig.9).また、地下水の DO, ORP と涵養年代は正の比 例関係を示すが、その相関は小さく(それぞれ R²=0.27、 0.34)、近年の地下水は DO、ORP のバラつきが大きい.しかし、涵養年代が古い地下水、特に 2000 年以前に涵養された地下水の DO は 3.65~6.19mg/L と相対的に低く、ORP は負の値を示す(Table 2).

地下水の δ^{18} O と推定された地下水涵養年代の関係を Fig.10 に示す. 涵養年代が古いほど δ^{18} O が高く,新しいほ ど δ^{18} O が低い傾向が見られた.

5. 考察

5.1 地下水の化学的特性と年代推定の妥当性

一般的に, 天水の δD, δ¹⁸O は, 高度効果の影響により 標高が高くなるほど低下する.これより,深度によって異 なる地下水の $\delta^{18}O$ (Fig.5) は、地すべり地の地下水がブロ ック上流域を含めて異なる標高から涵養された地下水の供 給を受けていることを示している.深度に比して高いδ¹⁸O を示す OW8 は、揚水試験時に採水した地下水であり、強 制的な流動により浅部の地下水が混合した可能性がある. また, OW10 が示す高い EC は, 孔内傾斜計のガイドパイ プ施工時のグラウトの影響が生じているものと思われる. これらの 2 点を除けば、地下水の δ^{18} O, EC は概ね深度ご とに段階的に変化していることから、地すべりブロック内 の地下水は、Tóth (1963) が概念を提示した地下水流動系 のように多層的な流動機構を有し、ピストン流により流動 しているとみなすことができる.地すべりブロック内を混 合が少ないまま多層的に地下水が流動することから、異な る涵養域から滞留時間の異なる地下水が流入し、流動して いることが示されたといえる.

涵養年代が異なり,地下水の滞留時間が長くなると,地 下水の水質は流動過程における粘土鉱物とのイオン交換に よりその組成に変化が生じる.本地すべり地においては, トリリニアダイアグラムにおける Ca-HCO₃型~Na-HCO₃ 型の水質組成(Fig.3)や硬度と重炭酸イオンの異なる比率

(Fig.4) が示すように、複数の型の水質が存在する.特に, (Ca²⁺+Mg²⁺)/HCO₃⁻比は地下水涵養年代が古いほど減少す る傾向がある(Fig.9).この傾向は、イオン交換による Ca²⁺, Mg²⁺の減少(と Na⁺の増加)と地層からの溶出による HCO₃⁻ の増加により説明可能である.OW1 が示す極めて低い (Ca²⁺+Mg²⁺)/HCO₃⁻比も長期間の流動過程による結果とし て矛盾しない.また、2000 年以前に涵養された地下水の DO, ORP が相対的に低い値を示す傾向は、流動過程にお いて有機物の分解や化学反応等により酸素が消費され、還 元状態に移行するため(Gascoyne, 1997)と考えられ、滞 留時間が長いことを表しているといえる.これら他の水質 要素との比較より、SF₆、トリチウムを用いて推定された地 下水の涵養年代は流動過程による地下水の「化学的進化」 (杉崎・柴田、1961)として生じた水質変化と整合的であ り、年代推定結果は妥当であるといえる.

深度別の地下水のδ¹⁸Oを測定し,地すべりブロック内の 地下水が標高の異なる涵養域からの地下水の供給を受け,

Fig.11 地すべりブロック内の滞留時間が異なる地下水の存在の概念図(a)ブロック中部,(b)ブロック上部,(c)ブロック南東部 ((a),(b)はFig.2より,(c)はFig.1より作成.また観測地点の位置は投影.)

Schematic diagram of groundwater with different residence time in the landslide block; (a) central, (b) upper and (c) southeast part of the block ((a), (b) are based on Fig.2, and (c) is based on Fig.1. The observation points are projected locations in the cross-sections.)

多層的な流動機構を有しているかを確認することで,涵養 年代が異なる地下水の存在を示すことが可能である.また, 流動過程における滞留時間の違いにより生じた水質組成の 変化のうち,特に(Ca²⁺+Mg²⁺)/HCO₃⁻比は涵養時期が古いほ どが低下する傾向にあり,これらの水質項目を比較するこ とで年代推定の妥当性を検証することが可能といえる.

5.2 年代推定結果からみた地すべり地の地下水の分類

本地すべり地には異なる年代に涵養された,滞留時間の 異なる地下水が存在する.地質断面におけるその概念図を Fig.11 に示す.

標高が高くなるにつれて同位体比が小さくなる高度効果 に従えば、 δ^{18} Oの小さい深い地下水(Fig.5)は標高が高い 地域から涵養されていると推測されるため、Fig.10 の地下 水の δ¹⁸O と涵養年代は一見矛盾した関係性を示す.しか し、これは帯水層の地質の透水性の違いに起因するものと 考えられる.地すべりブロック南東部のCW1,2は浅部で 涵養域は近傍にあるが,透水性の低い泥岩を通過するため, 滞留時間は長く、涵養年代は古い(Fig.11).一方、CW3 はCW1,2よりも深部で涵養域も遠くなるが、透水性の高 い粗粒玄武岩を通過するため、滞留時間が短く、相対的に 若い地下水となっている(Fig.11). 最大深度 120m に達す る深層のすべり面が形成される泥岩層もしくは泥岩層上面 付近の地下水はδ¹⁸O が低く(Fig.5),より高い標高のエリ アから涵養された可能性がある.この流動距離を考慮する と、すべり面付近の地下水は同じ泥岩層であっても CW1, 2よりさらに長い滞留時間を有するといえ, OW1 でトリチ ウムが検出されず、少なくとも60年以上前に涵養された古 い地下水であるという推定結果とも整合している. 全区間 が開口しているディープウェルは、開口区間が限られる観 測孔や特定の深度の地下水を排水する集水井と異なり、浅 部から深部の地下水が混合していると考えられる.開口区 間が短く、浅い DW2 は滞留時間が 5.2 年であり、涵養年代 が新しい地下水を排水しているといえる(Fig.8). 深いデ ィープウェル DW1, 3, 4 はそれぞれ異なった涵養年代を 示す (Fig.8). DW1, 3, 4 は粗粒玄武岩から凝灰質泥岩・

凝灰質砂岩互層を対象としたディープウェルであるが (DW1,3 は底部が泥岩層に到達)(Fig.11),DW4(深度 100m)の滞留時間が4.7年であるのに対し,DW1,3(い

ずれも深度 110m)の滞留時間は 11.1, 12.1 年である. これ は、DW4 が比較的若い地下水を排水しているのに対し、 DW1, 3 が排水する地下水は相対的に古い地下水の割合が 高いためと推察され、同程度の深さのディープウェルであ っても異なる流動層の地下水を排出しているといえる.

以上の結果より, SF6, トリチウムを指標として適用する ことで、地すべり地の地下水の年代推定を行い、地下水排 除工から排出される地下水が降雨や融雪水が短期間で循環 する新しい地下水であるか、あるいは循環性が小さい古い 地下水であるかを判別し、年代により地下水を分類するこ とが可能であることが示された. 比較的浅部の現代から数 十年前の涵養年代を対象とした場合には SF6, さらに深部 で古い涵養年代を持つかを判定する場合にはトリチウムを 適用することが有用であるといえる.また,滞留時間の違 いは、帯水層の透水性や涵養域からの距離により生じると 考えられる.このため、地下水の流れを既定する地形や地 質情報に加え、 δ^{18} O や δ D を指標として適用することで、 異なる涵養域からの地下水であることを考慮し、地下水の 分類を行うことが可能である.本研究で適用した SF₆や環 境同位体等の環境トレーサーは、地下水中に元来含まれる 成分である.このため、地下水を採取・分析することによ り年代の情報の取得が容易に行えるという利点があり、地 すべり地に供給される地下水を分類する上で有効な指標と いえる.

6. おわりに

本研究では、山形県鶴岡市の七五三掛地すべり地の地下 水流動状況を把握するため、地下水中の SF₆, CFCs, δD, δ¹⁸O, 放射性同位体トリチウム,溶存イオン濃度を測定し、 地下水涵養年代の推定を行った.推定された地下水年代は 流動過程における時間経過に伴う水質組成の変化と整合的 であり、推定結果は妥当であったといえる.本研究で使用 した環境トレーサーを組み合わせて用いることで、集水井 やディープウェルといった対策工から排出される地下水が どのような滞留時間の地下水を排除しているかの水文情報 の提供が可能であることが示された. CFCs については有 効な年代推定の指標であることを示す既往研究があるが、 本研究の対象地では微生物による分解の影響が見られた め、検討から除外した. CFCs を適用する場合には微生物 分解の影響の有無に留意する必要があるといえる.

今後は、本研究で実施できなかった比較的深い観測孔や 全区間が開口する観測孔での深度別地下水の不活性ガス濃 度の測定、新たに設置された集水井での測定などによりデ ータの蓄積を行い、地すべり地の地下水流動特性をより詳 細に把握することが必要である.また、地すべり防止区域 の範囲を定め、地表水排水を含めた対策工を選定するため には、その根拠として地すべりブロックに流入する地下水 の影響圏を定めることが重要となる.これより、地すべり 地を含めた広域の δD、δ¹⁸O の空間分布、時間的変化を把 握することにより、夏季の降雨、冬季の降雪、その後の融 雪の影響を明確に区分し、地すべり地の地下水の影響圏を 推定する手法を構築することが今後の重要な課題である. その際には、本研究で用いた環境トレーサーによる地下水 の年代推定の情報が有効に活用できると考える.

謝辞:本研究は、農林水産省委託プロジェクト研究「極端現象の 増加に係る農業水資源、土地資源及び森林の脆弱性の影響評価」, JSPS 科研費 25892030 の支援を受けた.研究実施にあたっては、 東北農政局庄内あさひ農地保全事業所各位から貴重な情報を頂く とともに、調査において多大なる支援を頂いた.また、(株)地球 科学研究所・浅井和由氏には六フッ化硫黄、フロン類の解析につ いて貴重な助言をいただいた.ここに記して深謝の意を表す.

引用文献

- 浅井和由, 辻村真貴(2010):トレーサーを用いた若い地下水の年 代推定法一火山地域の湧水への CFCs 年代推定法の適用一,日 本水文科学会誌,39,67-78.
- Asai, K., Tsujimura, M., Fantong, W.Y. and Satake, H. (2011) : Impact of natural and local anthropogenic SF₆ sources on dating springs and groundwater using SF₆ in central Japan, *Hydrological Research Letters*, **5**, 42–46.
- 浅井和由,安原正也,林 武司,辻村真貴,浅井和見 (2011):日本 の都市域周辺の大気 SF。 濃度分布と SF。 年代推定に与える影響 について,日本地球惑星科学連合2011年大会予稿集,AHW023-11.
- 防災科学技術研究所 (2009) (参照 2014.5.8): 七五三掛地すべり 周辺の地すべり地形の再判読, (オンライン),入手先 <http://lsweb1.ess.bosai.go.jp/disaster/shimekake/shimekake.html>
- Busenberg, E. and Plummer, L.N. (1992) : Use of chlorofluorocarbons (CCl₃F and CCl₂F₂) as hydrologic tracers and age-dating tools: The alluvium and terrace system of central Oklahoma, *Water Resources Research*, **28**, 2257–2284.
- Busenberg, E. and Plummer, L.N. (2000) : Dating young groundwater with sulfur hexafluoride: Natural and anthropogenic sources of sulfur hexafluoride, *Water Resources Research*, **36**, 3011–3030.
- Fine, R.A. (2011) : Observations of CFCs and SF₆ as Ocean Tracers, Annual Review of Marine Science, **3**, 173–195.

- Friedrich, R., Vero, G., Von Rohden, C., Lessmann, B., Kipfer, R. and Aeschbach-Hertig, W. (2013) : Factors controlling terrigenic SF₆ in young groundwater of the Odenwald region (Germany), *Applied Geochemistry*, 33, 318–329.
- Gascoyne, M. (1997) : Evolution of redox conditions and groundwater composition in recharge-discharge environments on the Canadian Shield, *Hydrogeology Journal*, 5(3), 4–18.
- Gooddy, D.C., Darling, W.G., Abesser, C. and Lapworth, D.J. (2006) : Using chlorofluorocarbons (CFCs) and sulphur hexafluoride (SF₆) to characterise groundwater movement and residence time in a lowland Chalk catchment, *Journal of Hydrology*, **330**, 44–52.
- Guglielmi, Y., Bertrand, C., Compagnon, F., Follacci, J.P. and Mudry, J. (2000) : Acquisition of water chemistry in a mobile fissured basement massif: its role in the hydrogeological knowledge of the La Clapière landslide (Mercantour massif, southern Alps, France), *Journal of Hydrology*, 229, 138–148.
- Horneman, A., Stute, M., Schlosser, P., Smethie, W., Santella, N., Ho, D.T., Mailloux, B., Gorman, E., Zheng, Y. and van Geen, A. (2008) : Degradation rates of CFC-11, CFC-12 and CFC-113 in anoxic shallow aquifers of Araihazar, Bangladesh, *Journal of Contaminant Hydrology*, 97, 27-41.
- 今泉眞之,石田 聡,土原健雄(2002):環境同位体を使った地下 水涵養機能研究の現状一同位体水文学からみた地下水涵養機能 一,農業工学研究所報告,41,1-17.
- International Atomic Energy Agency (2006) : Use of Chlorofluorocarbons in Hydrology: a Guidebook, Technical Report Series 438, 1–52.
- 川上 浩 (2009):地すべり地における地下水の挙動,日本地すべ り学会誌,45(5),351-357.
- 川原谷 浩,松田英裕,松葉谷 治(2000):酸素・水素安定同位 体比を利用した秋田県谷地地すべり地の地下水の混合と起源に ついて,地すべり,36(4),48-55.
- 経済企画庁(1964):土地分類基本調査「湯殿山」, 9-14.
- Koh, D.-C., Plummer, L.N., Busenberg, E. and Kim, Y. (2007) : Evidence for terrigenic SF₆ in groundwater from basaltic aquifers, Jeju Island, Korea: Implications for groundwater dating, *Journal of Hydrology*, 339, 93–104.
- Kusano, Y., Tokunaga, T., Asai, K., Asai, K., Takahashi, H.A., Morikawa, N. and Yasuhara, M. (2014) : Occurrence of old groundwater in a volcanic island on a continental shelf; an example from Nakano-shima Island, Oki-Dozen, Japan, *Journal of Hydrology*, **511**, 295–309.
- 松浦純生(2012):日本の地すべり研究の発展と未来一斜面変動場 における地下水文・水理学の進展と今後の課題一,日本地すべ り学会誌,49(3),95-105.
- Mikoš, M., Četina, M. and Brilly, M. (2004) : Hydrologic conditions responsible for triggering the Stože landslide, Slovenia, *Engineering Geology*, **73**, 193–213.
- 長溝 忍(1979):地すべり地内における地下水区分の一手法,地 すべり, 15(4), 28-32.
- Peng, T.R., Wang, C.H., Hsu, S.M., Wang, G.S., Su, T.W. and Lee, J.F. (2010) : Identification of groundwater sources of a local-scale creep slope: Using environmental stable isotopes as tracers, *Journal of Hydrology*, 381, 151-157.
- Peng, T.R., Wang, C.H., Lai, T.C. and Ho, F.S.K. (2007) : Using hydrogen, oxygen, and tritium isotopes to identify the hydrological factors contributing to landslides in a mountainous area, central Taiwan, *Environmental Geology*, **52**, 1617–1629.
- Plummer, L.N., Rupert, M.G., Busenberg, E. and Schlosser, P. (2000) : Age of irrigation water in ground water from the Eastern Snake River Plain aquifer, South-Central Idaho, *Ground Water*, **38**, 264–283.

- 相楽 渉,丸井英明,吉松弘行(2005):大規模地すべり地の地下 水流動特性に関する考察:東北地方の第三紀層地すべりを例 として,日本地すべり学会誌,42(1),51-62.
- Santella, N., Ho, D.T., Schlosser, P. and Stute, M. (2008) : Widespread elevated atmospheric SF_6 mixing ratios in the Northeastern United States: Implications for groundwater dating, *Journal of Hydrology*, **349**, 139–146.
- Sebol, L.A., Robertson, W.D., Busenberg. E., Plummer, L.N., Ryan, M.C. and Schiff, S.L. (2007) : Evidence of CFC degradation in groundwater under pyrite-oxidizing conditions, *Journal of Hydrology*, 347, 1–12.
- 末峯 章,日浦啓全,浅井和由,柳楽祐平,王 功輝(2012):結 晶片岩地すべりの地下水年代測定例,日本地すべり学会研究発 表講演集,61-62.
- 杉崎隆一,柴田 賢(1961):地下水の地球化学的研究(第2報) 一濃尾平野における地下水と地質構造との関連性一,地質学雑 誌,67,427-439.
- 鈴木将之,佐藤 修(2002):同位体からみた福島県滝坂地すべり 地における地下水の起源,地すべり、39(3),33-39.
- 寺田 剛,鎌田知也,森 一司,中原正幸(2010):2009年山形県 鶴岡市七五三掛地すべり災害における緊急対策および恒久対 策,地盤工学会誌,58(11),36-37.
- 土原健雄,奥山武彦, 吉本周平, 白旗克志, 石田 聡(2014a):

水素・酸素安定同位体比,六フッ化硫黄,トリチウムを指標と した地すべり地における地下水流動特性の検討,日本地下水学 会 2014 年春季講演会予稿集,90-93.

- 土原健雄,奥山武彦,吉本周平,白旗克志,石田 聡(2014b): 水素・酸素安定同位体比の高度効果からみた地すべり地の地下 水涵養源の検討,平成26年度農業農村工学会大会講演会講演要 旨集,630-631.
- Tóth, J. (1963) : A Theoretical Analysis of Groundwater Flow in Small Drainage Basins, *Journal of Geophysical Research*, 68(16), 4795– 4812.
- 吉松弘之 (1991): 地すべり地の地下水特性と地下水排除工の効果, 地下水学会誌,33(4),253-264.
- 吉岡龍馬(1990):地すべりと水一地球化学的調査(その1)-, 地下水学会誌, 32(3), 147-162.
- 吉岡龍馬,真嶋清隆,小泉尚嗣(1988):長野県地附山地すべり地 における天然水の化学成分および同位体組成について,京都大 学防災研究所年報,31(B-1),153–165.
 - [2014. 7. 7. 受稿, 2014. 11. 7. 閲読了] [この研究論文に対する公開の質疑あるいは討議(4,000字以内, 農業農村工学会論文集企画・編集委員会あて)は, 2015年6 月24日まで受付けます.]

Sulfur Hexafluoride-based Age Dating of Groundwater in the Shimekake Landslide in Yamagata, Japan

TSUCHIHARA Takeo*, OKUYAMA Takehiko**, YOSHIMOTO Shuhei*, SHIRAHATA Katsushi* and ISHIDA Satoshi*

* National Institute for Rural Engineering, National Agriculture and Food Research Organization, 2-1-6 Kannondai, Tsukuba, Ibaraki 305-8609, JAPAN

** Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, JAPAN

Abstract

Sulfur hexafluoride (SF₆), chlorofluorocarbons (CFCs), stable isotopic composition of oxygen and deuterium ($\delta^{18}O$, δD), radioisotope tritium and dissolved major ions in groundwater were measured for groundwater age dating to provide indication of the groundwater flow mechanism in the Shimekake landslide area, Yamagata, Japan. It can be found from this study that SF₆ is effective in dating the shallower groundwater, and tritium is effective in dating the deeper groundwater in the landslide. The comparison of the results of groundwater age dating and the observed groundwater chemistry suggests that older groundwater indicates the lower (Ca²⁺+Mg²⁺)/HCO₃⁻⁻ ratio, especially, and this ratio can be thus applicable to the validation of age dating. Investigating $\delta^{18}O$ in groundwater with depth, in addition to topographical and geological data, can reveal the multi-layered groundwater flow in the landslide block, and can be effective in implying that groundwater flows into the landslide block from different recharge areas with different residence times. It is thus deduced that when used together, these environmental tracers applied in this study can help to classify groundwater drained from countermeasure works in a landslide area based on groundwater age.

Key words : Landslide, Groundwater, Sulfur hexafluoride, Environmental isotope, Recharge date, Residence time