トラフグ,Takifugu rubripesの完全養殖化の試み

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>誌名</td>
<td>水産増殖 = The aquiculture</td>
</tr>
<tr>
<td>ISSN</td>
<td>03714217</td>
</tr>
<tr>
<td>巻/号</td>
<td>413</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 367-371</td>
</tr>
<tr>
<td>発行年月</td>
<td>1993年9月</td>
</tr>
</tbody>
</table>

農林水産省 農林水産技術会議事務局筑波産学連携支援センター
Tsukuba Business-Academia Cooperation Support Center, Agriculture, Forestry and Fisheries Research Council Secretariat
トラフガ，*Takifugu rubripes* の完全養殖化の試み

松田宗之\(^1\)・山内達也\(^1\)・上口茂則\(^1\)・平田八郎\(^2\)

\(^1\)東鶴水産種苗センター，\(^2\)鹿児島大学水産学部

Seedling Production from the Hatchery-Reared Puffer Fish, *Takifugu rubripes*:

An Attempt to Establish a Closed Life-cycle Culture System

Muneyuki Matsuda, Tatsuya Yamauchi, Shigenori Ueguchi, and Hachiro Hirata

Abstract

Seedling production from the hatchery-reared puffer fish, *Takifugu rubripes* was conducted in order to establish the possibility of a closed life-cycle culture system for puffer fish. Male and female breeders used in the experiment were cultured from the larval to the adult stage between 1988 and 1992 in our pen culture farm at Azuma-cho, Kagoshima Prefecture. Body weight of matured fish ranged from 1.8 to 2.45 kg on April 1992. The gravid females were transferred to the hatchery tank, and then hormone Puberogen (Sankyozoki Co., 1,000 IU/fish on April 7, and 1,500 IU/fish on April 10) was injected. Eight days after the injection, five fishes spawned a total of 136,000 eggs. After that, 45,700 juvenile were obtained.

The hatching rate was 33.4%. Out of the larvae produced, 3,300 young puffer fishes were obtained from the second breeding generation. Their current average body weight on January 1993 was 193 g.

1970年に今井は、「種苗に殆ど成魚にいたる人為的かつ計画的な生物生産」の必要性を提唱し、その養殖システムを完全養殖と呼んでいる。それ以来、受精卵を種苗から親魚を経て採卵にいたる一貫飼育によって、自給される例が増えといった。しかし、トラフガ，*Takifugu rubripes*の種苗生産は、1960年代から行われているが\(^2\)-\(^4\)，その受精卵の確保は今なお自然親魚に依存する方式がとられている\(^5\)-\(^8\)。そのような方式では、受精卵の確保は漁獲量に左右されるので、計画的な種苗生産は至難になる。とくに，近年トラフガ親魚の漁獲量が激減してきたので，天然親魚へ

の期待はほとんど望めない状態である。したがって，トラフガ卵の自給を目指した完全養殖化への技術開発が急がれている。

最近，宮木ら\(^9\)は天然親魚へのホルモン処理による受精卵の確保が可能であると報告している。しかし，その方法も，天然魚依存方式なので，漁獲量の影響は避けられない。現状のような漁獲減の状況下では，天然魚に依存するよりも，完全養殖による受精卵の確保が望ましい。

そこで，われわれはトラフガの完全養殖をめざして，1988年に天然親魚を用いて採卵・受精を行って種苗
生産した稚魚を、親魚に至るまで養成した。そして、1992年4月にその親魚から採卵し、ふ化仔魚の飼育に成功した。以下にその概要を報告する。

材料および方法

親魚養成 1988年4月、鹿児島県出水郡東町蒲井の東町漁業協同組合に水揚げされた天然親魚から採卵・受精し、稚種生産を行った。これらのうちから、1988年6月に約2,000尾を選び出し、海面を越え（5 × 5 × 4 m）へ入して親魚養成を開始した。その後、1990年7月に、再度、成長の早い個体を100尾選び出し、親魚となった1992年4月まで養成を継続した。

飼餌は1988年6月から1990年7月まではマサバ、Scomber japonicusとオキアミ類を主体にしたが、それ以降は主として市販のモイストペレット（ミチワ産業）を与えた。1992年1月からスルメイカ、Toadorides pacificusやオキアミ類を併用給餌した。給餌は1～2日に1回、飽食をめざして行った。

養成親魚の捕獲、採卵および人工授精 養成した親魚は、1992年4月7日と4月10日にそれぞれ3尾と4尾をいきすぎとりあげ、そのつど、遠かにホルモン剤を筋部に注射した。試験ホルモン剤には、ブベローゲン（三共生）を用いた。その使用量は4月7日の3尾に1,000 IU/尾、また、4月10日の4尾には1,500 IU/尾とした。

ホルモン処理後、親魚は陸上水槽（2 × 2 × 0.7 m、水量2.5 m³）に収容し、ろ過海水を毎時1.8 m³の割合で上部より注水し、底部より排水し、親魚の腹部状態を毎日観察し、隆起した個体は適宜取り上げて腹部手で押しながら採卵を試みた。

採卵できたときはただちに採精し、混和法によって人工授精を行った。水槽内の底部に自然放卵された卵は、サイフォン（13 mmホース）により集卵し、ふ化に供した。

養成親魚の卵から稚魚への育成 得られた卵は、洗卵後15日に入りのアルテミアふ化化せるに収容した。その際、当日採卵分は、同一ふ化化せるに収容することとし、その飼育密度は600～4,900粒/尾であった。いずれも、強い通気とろ過海水を1日2回の割合で換水しながら、ふ化管理を行った。卵数計測は、通気揺拌中の卵を100mlずつ3回サンプリングし、その平均値で換算した。

ふ化仔魚は、4月22日から28日にふ化したものをA群とし、それぞれ0.5kgと1kg入りパンライク水槽各1面に収容した。4月25日から30日にふ化したものをB群とし、それぞれ1kgパンライク水槽2面に収容した。これらの飼育水は、1～3日おきに各水量の約10％程度を換水した。

その後、A、B両群が日齢22か29日になった時点で、それぞれ別個のコンクリート水槽（20 × 2 × 0.7m、水量20m³）へ収容した。その飼育水は、1日1回0.3～2.4回の割合で入れ替わる状態とした。

さらに、両群が日齢40から44日に達すると、それぞれ別個の海面を越え（5 × 5 × 4 m）へ収容した。

飼料として、日齢2か14日目まではシナオミツボワムシ、Branchionus pacificus を、日齢10か27日目まではアルテミア、Artemia salina の幼生を、日齢28日から海面を越えへ収容するまで配合飼料をそれぞれ給えた。海面を越えへ収容したのは、配合飼料にオキアミ類とイカナゴ、Ammodites personatus のミチウも加えて給餌した。1992年6月24日にA、B両群より3,300尾の稚魚を次期苗魚養成として選別した。そして、1992年8月20日にそれぞれの飼育基盤を、配合飼料、モイストペレット、オキアミ類の併用給餌によって養成した。

結果および考察

養成親魚の育成 1988年4月から1992年4月まで4年間における親魚養成群の体重測定の結果は、Fig.1に示すとおりである。養成トウフラグの成長は季節的変化がみられなかった。それは、夏季に寄生虫の発生によって食欲が衰え、成長が停滞したとも言える。1992年4月に生後初めて採卵に供した親魚の体重は、放卵・放精後で、雌が1.8～2.45kg、雄が2.1～2.27kgであった。それぞれの個体は、これまで採卵に使われた天然親魚（4～8kg）より小型であった。

親魚養成群に2度目の選別をした1990年7月から採卵を試みた1992年4月までの水温および飼育密度の変化は、Fig.2に示すとおりである。その間における水温は、13.0～26.6℃の範囲で推移した。養成トウフラグ苗藻の生態並びにその育成に関する研究、昭和51年度鹿児島大学大学院水産学研究科修士論文、pp.17-19.

トラフグの完全養殖化

死魚には尾の腐れや、やせ細っている個体が多くみられたが、それは養成魚の歯欠け処理が不十分であったことによるものと思われる。マダイなどほかの養成親魚と比較して、養成トラフグは、寄生虫の付着度合いが高く、掠食状態もしばしば悪くなった。今後、

Table 1. Number of eggs obtained from the cultured females induced by hormone treatments and the hatching rates

<table>
<thead>
<tr>
<th>Date of eggs obtained (1992)</th>
<th>Number of eggs ($\times 10^3$)</th>
<th>Number of females (n)</th>
<th>Date of hatching (1992)</th>
<th>Number of larvae ($\times 10^3$)</th>
<th>Hatching rates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr. 15</td>
<td>9.3</td>
<td>3</td>
<td>Apr. 22–27</td>
<td>5.0</td>
<td>53.8</td>
</tr>
<tr>
<td>Apr. 16</td>
<td>74.8</td>
<td>2</td>
<td>Apr. 23–28</td>
<td>21.3</td>
<td>28.5</td>
</tr>
<tr>
<td>Apr. 17</td>
<td>(200.0)*</td>
<td></td>
<td>Apr. 27–30</td>
<td>19.4</td>
<td>36.7</td>
</tr>
<tr>
<td>Apr. 20</td>
<td>52.8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>136.9</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Natural spawning in the tank.

*白井雅彦（1976）：トラフグ種苗の生態並びにその育成に関する研究。昭和51年度鹿児島大学大学院水産学研究科修士論文，14 pp.
Table 2. Results of seedling production of the puffer fish, Takifugu rubripes cultured from the larval stage

<table>
<thead>
<tr>
<th>Culture systems</th>
<th>Items</th>
<th>(Units)</th>
<th>Group A</th>
<th>Group B</th>
<th>Σ or Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larval culture</td>
<td>(1) Capacity of tank</td>
<td>(m²)</td>
<td>0.5 & 1.0</td>
<td>1.0 & 1.0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(2) Culture age</td>
<td>(day)</td>
<td>129 & 128</td>
<td>124 & 122</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(3) Initial number of seeds</td>
<td>(×10⁵)</td>
<td>18.5</td>
<td>27.2</td>
<td>45.7</td>
</tr>
<tr>
<td></td>
<td>(4) Final number of seeds</td>
<td>(×10⁵)</td>
<td>14</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>(5) Survival rates: (4)/(3)</td>
<td>(%)</td>
<td>75.7</td>
<td>73.5</td>
<td>—</td>
</tr>
<tr>
<td>Nursery culture</td>
<td>(6) Capacity of tank</td>
<td>(m²)</td>
<td>20</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(7) Culture age</td>
<td>(day)</td>
<td>28/29~44</td>
<td>22/24~40</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(8) Final number of seeds</td>
<td>(×10⁵)</td>
<td>7.0</td>
<td>6.0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(9) Survival rates: (8)/(4)</td>
<td>(%)</td>
<td>50</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(10) Final size of seeds</td>
<td>(mm)</td>
<td>25.1</td>
<td>25.5</td>
<td>25.3</td>
</tr>
<tr>
<td>Pen culture</td>
<td>(11) Capacity of pen</td>
<td>(m²)</td>
<td>80</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(12) Culture age</td>
<td>(day)</td>
<td>44~64</td>
<td>40~60</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(13) Final number of seeds</td>
<td>(×10⁵)</td>
<td>6.6</td>
<td>4.2</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>(14) Survival rates: (13)/(8)</td>
<td>(%)</td>
<td>94.3</td>
<td>70.0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(15) Final size of seeds</td>
<td>(mm)</td>
<td>42.2</td>
<td>45.5</td>
<td>43.8</td>
</tr>
<tr>
<td>Results summarized</td>
<td>(16) Culture age</td>
<td>(day)</td>
<td>1~64</td>
<td>1~60</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(17) Initial number of seeds</td>
<td>(×10⁵)</td>
<td>18.5</td>
<td>27.2</td>
<td>45.7</td>
</tr>
<tr>
<td></td>
<td>(18) Final number of seeds</td>
<td>(×10⁵)</td>
<td>6.6</td>
<td>4.2</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>(19) Survival rates: (18)/(17)</td>
<td>(%)</td>
<td>35.7</td>
<td>15.4</td>
<td>23.6</td>
</tr>
</tbody>
</table>

14,000尾となり、その間の歩留まりは75.7％であった。A群の収容尾数は、ふ化日で27,200尾であったが、日齢22~24日目で20,000尾となり、その間の歩留まり73.5％であった（Table 2）。

同様に、20リットルタンクの場合でAおよびB群の歩留まりは、それぞれ50％および30％であった。

さらに、海面に移してから20日間のAおよびB群の生残率は、それぞれ94.3％（生残数6,600尾）および70.0％（生残数4,200尾）であった。また、その時のAおよびB群の平均全長は、それぞれ42.2mmおよび45.5mmであった。

以上の結果から、全長43mmの稚魚（日齢60~64日）までの通算生残率は、A群で35.7％であり、B群で15.4％であった。また、それらの平均生残率は23.6％と算出された（Table 2）。

これまでの当センターにおけるトラフグの上記種苗生残率は、5~10％であった。本実験では、それらと比較して高い生残率が得られたが、それは今回の場合、飼育密度を低くするなど、飼育技術の改善によるものと思われる。

養成親魚から生産した種苗のうち、3,300尾を再び親魚へ育成するために海面にいきやす飼育中であるが、1993年1月までの飼育結果はFig. 3に示すとおりである。

それらの養成魚は、1992年8月20日に十分な飼育処理を行ったところ、その直後の数日間は飼育個体がみられたが、それ以降の生残は安定し尾柄部の損

Fig. 3. Growth of the larvae obtained from the first breeding generation of adult puffer fish.
トラフガの完全養殖化

1988年に行った養成トラフガは、歯欠き処理が不完全であったので、尾鰭の損傷などによる死苗が多くみられた。したがって、トラフガ種苗の歯欠き処理は親魚養成の過程で生残率を高めるものと思われる。

なお、1992年4月、養成親魚から採卵し、飼育したトラフガは、1993年1月に平均全長207mm、体重193gとなり、ほぼ正常な成長を示している（Fig.3）。

完全養殖の課題 以上の結果、トラフガの親魚養成の課題であった尾鰭部の損傷による生残率の低下は、完全養殖種苗の親魚養成でみた歯欠き処理によってほぼ解消されたものと思われる。しかし、養成親魚から得られた受精卵のふ化率は、天然親魚の事例より半減しており、今後、親魚養成中の栄養補給など11を配慮して、良質卵の確保とふ化率の向上について検討を重ねたい。また、水槽内における自然産卵の促進、産卵親魚の翌年に産卵の可能性、親魚養成期間の短縮等が検討課題として残されている。

要約
トラフガの完全養殖化を図る目的で、1988年に天然親魚によって自家生産した種苗を親魚に至るまで4年間養成した。1992年4月にそれらの自給親魚にフベロックで亜熱処理を施した。供試フベロックは、1尾当り1,000〜1,500尾の割合で筋肉に注射した。採卵は処理後5日目から可能となり、5尾の親魚から136,900粒の受精卵を得ることができた。

受精卵の総数は45,700尾であり、受精卵の平均ふ化率は33.4%と算出された。また、43mmサイズまでの種苗生産数は10,800尾であり、その間における仔稚魚の生残率は23.6%であった。

謝辞
本研究の遂行にあたって、種々のご支援を仰いだ東京都役場の山口昭則氏、川端秀紀氏、および上原トシエ氏に深謝する。また、英文添削にご協力を頂いた鹿児島大学大学院連合農学研究科学生エリック・フロレト氏に謝意を表する。

文献
1）今井丈夫（1971）：浅海完全養殖，恒星社厚生閣，東京，454pp。
2）藤田矢郎（1962）：日本産主要フグ類の生活史に関する研究，長崎水試論文集，(2)，1-121。
3）平田八郎（1964）：トラフガの人工ふ化飼育，栽培漁業，1，1-5。
4）平田八郎（1964）：トラフガの人工孵化，養殖，1（11），34-37。
5）西日本種苗生産関連協議会（1990）：第8回魚類分科会会議要録，167pp。
6）西日本種苗生産関連協議会（1991）：第9回魚類分科会会議要録，195pp。
7）西日本種苗生産関連協議会（1992）：第10回魚類分科会会議要録，299pp。
8）東京水産種苗センター（1992）：平成4年度事業報告，東京役場，29pp。
9）宮本廉夫・立原一憲・蛭子亮利・塚島泰夫・松村靖治・藤田矢郎・林田豪介・多部田修（1992）：ホルモン処理によるトラフガの成熟促進，水産増殖，40(4)，439-442。
10）永山博敏・長浜達昌・小野山弘・政井良隆・金尾博和・樫秀隆・丹下勝義（1986）：マコガレイ種苗生産事業，昭和59・60年度兵庫県栽培漁業センター事業報告，12-15。
11）角田 出・岡部正也・難波憲二・中川平介・熊井英水・中村元二（1988）：トラフガの飼料に関する研究-III.水産増殖，36(3)，183-191。