表

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>誌名</td>
<td>岐阜県畜産研究所研究報告</td>
</tr>
<tr>
<td>ISSN</td>
<td>13469711</td>
</tr>
<tr>
<td>著者</td>
<td>松橋, 琢子丸山, 新常石, 英作小林, 直彦林, 登星野, 洋一郎酒井, 謙司</td>
</tr>
<tr>
<td>巻/号</td>
<td>7号</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 7-13</td>
</tr>
<tr>
<td>発行年月</td>
<td>2007年7月</td>
</tr>
</tbody>
</table>

農林水産省 農林水産技術会議事務局筑波産学連携支援センター
Tsukuba Business-Academia Cooperation Support Center, Agriculture, Forestry and Fisheries Research Council Secretariat
黒毛和種肥育牛における脂肪酸不飽和化酵素（SCD）遺伝子多型と胸長筋脂肪酸組成との関連

松橋 珠子・丸山 新・常石 英作1)・小林 直彦・林 登・星野 洋一郎・酒井 謙司

1)（独）農業・生物系特定産業技術研究機構九州沖縄農業研究センター

筋肉脂肪中の脂肪酸組成は栄養面だけでなく肉の食味にも影響を与える重要な因子である。SCD は飽和脂肪酸を一価不飽和脂肪酸（MUFA）に変換する酵素であり、ウシの SCD 遺伝子のエクソン 5 上に存在する 878C>T の SNP は脂肪内の MUFA 割合を変化させることが報告されている。そこで本研究では、SCD 遺伝子の SNPs の育種マーカーとしての可能性を採るために、岐阜県で生産された黒毛和種肥育牛において胸長筋内脂肪の脂肪酸組成に対する SCD 遺伝子 SNP の効果を検証した。平成 16 年から平成 18 年にかけて岐阜県内で処理された 297 匹の黒毛和種肥育牛についてその枝肉成績を収集すると共に、胸長筋中の粗脂肪含量を測定し、胸長筋内脂肪の脂肪酸組成を分析して、SCD 遺伝子の遺伝子多型との関係を調べた。その結果、用いた集団内の SCD 遺伝子多型頻度は AA 型 0.475、VA 型 0.431、VV 型 0.094 となっていた。胸長筋内脂肪の脂肪酸組成は、去勢牛では去勢子孫の多型で異なっており、A 対立遺伝子を多く持つ集団ほど C14:0 および C18:0 の割合が減少し、C14:1 および C18:1 の割合が増加していた。この効果により、胸長筋内脂肪の MUFA 割合は VY 型の去勢牛に比べ VA 型の去勢牛では平均 2.4%、AA 型の去勢牛では平均 3.4% 大小する効果が認められた。一方雌牛では去勢牛のような顕著な効果は認められなかった。胸長筋内脂肪の MUFA 割合に対しては SCD 遺伝子型以外に性別や出荷年度、出荷月齢も影響を与える可能性が認められた。しかし、これらの影響を考慮しても MUFA 割合に対する SCD 遺伝子型の効果は有意であった。枝肉形質に対する SCD 遺伝子型の効果は去勢牛、雌牛共に認められなかった。以上の結果から、SCD 遺伝子エクソン 5 上に存在する SNP は胸長筋内脂肪の脂肪酸組成を制御するマーカーとして有効であることが示唆された。

キーワード（SCD 遺伝子型、脂肪酸組成、一価不飽和脂肪酸、枝肉形質、胸長筋）

緒言

和牛肉では、霜降りと呼ばれる脂肪交雑の多さ、細かさがその良否を決める重要な因子である。さらに、脂肪交雑が同程度であればも脂肪の量の違いにより食味には差があることが知られている。一価不飽和脂肪酸であるオレイン酸は牛脂に多く含まれておき、この含有率が高いほど脂肪の融点は低下し口触りがよくなり、また風味のよさが生み出されること（報告されている）。オレイン酸などの一価不飽和脂肪酸（MUFA）は、脂肪酸不飽和化酵素 stearoyl-CoA desaturase (SCD) によって飽和脂肪酸から合成される。井上ら 2) は、和牛 SCD 遺伝子の DNA 配列上に 1 塩基の変異 (SNP) が存在し、この変異によって生じる多型間では脂肪組織内の脂肪酸組成に差があることを報告している。SCD 遺伝子上には複数の SNP 部位が存在するが、そのうちエクソン 5 上に存在する第 878 番目の塩基はチミン (T) からシトシン (C) への置換であり、これに伴ってアミノ酸はバリン (Val, V) からアラニン (Ala, A) に変化する。この SNP 部位の塩基が C である集団（遺伝子型：A 型）は、塩基が T である集団（遺伝子型：V 型）に比べて最も顯著の MUFA 含有量は有意に高くなることが報告されている。そこで本研究では、岐阜県内で生産された黒毛和種肥育牛を用いて、この第 878 番目の SNP によって生じる SCD 遺伝子型間で枝肉形質や脂肪酸組成に差が生じるかを検証し、美味しい牛肉を生産するための種畜選抜マーカーとしての有効性を検討した。

材料および方法

平成 16 年度から平成 18 年度にかけて岐阜県内の食肉処理施設で処理された黒毛和種肥育牛の枝肉成績を調査すると共に、精肉店から第 6-7 助間部位約 1cm 厚のロース肉を入手し、筋間脂肪、および胸長筋を採取した。胸長筋中の粗脂肪含量はソックスレー法によりエデ
全 DNA は筋間脂肪から Nucleo Spin Food (MACHEREY·NAGEL) を用いて抽出した。SCD の遺伝子型は PCR·RFLP 法により判定した[3]。第 878 番目の SNP は第 702 番目の SNP と強く連鎖していることが報告されている。このため、より容易に検出ができる第 702 番目の遺伝子型を同定することで第 878 番目の SNP の遺伝子型を判定した。第 702 番目の SNP の存在する領域を、プライマーセット SCD-F702（配列番号 5）および SCD-R702（配列番号 6）を用いて増幅し、制限酵素 NcoI (TaKaRa) で 37℃、1 時間処理の後、3 % スケロースで泳動して遺伝子型を決定した。

得られたデータを元に、SCD 遺伝子型と枝肉形質や胸長筋中の粗脂肪含量、胸最長筋内脂肪の脂肪酸組成との関連について解析した。

結果及び考察
データを収集した集団には間接検定に用いられた出荷月齢の若い個体が複数含まれていた。この為これらのウェンによるデータの偏りを防ぐために、出荷月齢 24 ヶ月以上の個体を解析に用いた。出荷月齢や枝肉重量が大きく外れた数頭を除いた出荷月齢 24 ヶ月以上 34 ヶ月未満、枝肉重量 300kg 以上の個体を計 297 頭（去勢 260 頭、雌牛 37 頭）のデータを用いて SCD 遺伝子型の効果を解析した。解析に用いた岐阜県産黒毛和種肥育牛集団の枝肉形質と脂肪酸組成の基本統計値は表 1、表 2 の通りであった。出荷月齢及び枝肉形質（枝肉重量、ロース芯面積、バラの厚さ、皮下脂肪厚、歩留基準値、BMS No、BCC No、単価、胸最長筋内の粗脂肪含量）、胸最長筋脂肪の脂肪酸組成（C12:0, C14:0, C14:1, C15:0, C16:0, C16:1, C18:0, C18:1, C18:2, C18:3）の割合（MUFA, USFA の割合）の雌雄差について Student の t 検定を行った。その結果、出荷月齢および枝肉重量について去勢牛と雌牛の間に有意差が検出された。平均出荷月齢は去勢牛の方が有意に高く、平均枝肉重量も雌牛よりも去勢牛の方が有意に重かった。その他の枝肉形質について
表２ 胸最長筋内脂肪の脂肪酸組成の基本統計値

<table>
<thead>
<tr>
<th>性別</th>
<th>検体数</th>
<th>平均</th>
<th>最小値</th>
<th>最大値</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12:0 去勢</td>
<td>249</td>
<td>0.073</td>
<td>0.0</td>
<td>0.171</td>
<td>0.029</td>
</tr>
<tr>
<td>雌</td>
<td>35</td>
<td>0.068</td>
<td>0.0</td>
<td>0.105</td>
<td>0.020</td>
</tr>
<tr>
<td>C14:0 去勢</td>
<td>249</td>
<td>3.04</td>
<td>1.75</td>
<td>4.81</td>
<td>0.51</td>
</tr>
<tr>
<td>雌</td>
<td>35</td>
<td>2.84**</td>
<td>1.86</td>
<td>3.95</td>
<td>0.49</td>
</tr>
<tr>
<td>C14:1 去勢</td>
<td>249</td>
<td>0.850</td>
<td>0.107</td>
<td>1.796</td>
<td>0.72</td>
</tr>
<tr>
<td>雌</td>
<td>35</td>
<td>0.787</td>
<td>0.411</td>
<td>1.314</td>
<td>0.211</td>
</tr>
<tr>
<td>C15:0 去勢</td>
<td>249</td>
<td>0.536</td>
<td>0.0</td>
<td>1.177</td>
<td>0.175</td>
</tr>
<tr>
<td>雌</td>
<td>35</td>
<td>0.504</td>
<td>0.0</td>
<td>0.837</td>
<td>0.151</td>
</tr>
<tr>
<td>C16:0 去勢</td>
<td>249</td>
<td>26.4</td>
<td>21.3</td>
<td>32.1</td>
<td>1.9</td>
</tr>
<tr>
<td>雌</td>
<td>35</td>
<td>25.3***</td>
<td>20.7</td>
<td>29.8</td>
<td>1.8</td>
</tr>
<tr>
<td>C18:0 去勢</td>
<td>249</td>
<td>10.77</td>
<td>7.32</td>
<td>16.07</td>
<td>0.029</td>
</tr>
<tr>
<td>雌</td>
<td>35</td>
<td>10.38</td>
<td>8.35</td>
<td>14.05</td>
<td>0.020</td>
</tr>
<tr>
<td>C18:1 去勢</td>
<td>249</td>
<td>50.8</td>
<td>43.4</td>
<td>58.7</td>
<td>2.9</td>
</tr>
<tr>
<td>雌</td>
<td>35</td>
<td>52.5**</td>
<td>47.0</td>
<td>58.3</td>
<td>2.7</td>
</tr>
<tr>
<td>C18:2 去勢</td>
<td>249</td>
<td>2.85</td>
<td>0.66</td>
<td>4.74</td>
<td>0.67</td>
</tr>
<tr>
<td>雌</td>
<td>35</td>
<td>2.86</td>
<td>0.82</td>
<td>5.33</td>
<td>0.78</td>
</tr>
<tr>
<td>C18:3 去勢</td>
<td>249</td>
<td>0.193</td>
<td>0.0</td>
<td>0.741</td>
<td>0.100</td>
</tr>
<tr>
<td>雌</td>
<td>35</td>
<td>0.251**</td>
<td>0.102</td>
<td>0.937</td>
<td>0.163</td>
</tr>
</tbody>
</table>

去勢-雌間の比較：* p < 0.05, ** p < 0.01, *** p < 0.001

基準値、BMS No., BCS No., 単位について、SCD 遺伝子型による一元配置の分散分析を行った。その結果、去勢牛、雌牛ともにいずれの枝肉形質についても SCD 遺伝子型の効果は認められなかった（表５）。胸最長筋内の粗脂肪含量についても SCD 遺伝子型間で有意な差は認められなかった。

次に胸最長筋内脂肪の脂肪酸組成に対する SCD 遺伝子型の効果について一元配置の分散分析を行った。有意となった因子については遺伝子型間の最小二乗平均の差の検定を行った。その結果去勢牛では、飽和脂肪酸 C14:0, C18:0, 一価不飽和脂肪酸である C14:1, C18:1, そして MUFA, USFA の割合において SCD 遺伝子型間で有意な差が認められた（表６）。C14:0 と C18:0 の割合は AA 型と VA 型と VK 型の順に高くなっていた。一方、C14:1, C18:1, MUFA, USFA の割合は VK 型と VA 型と AA 型の順に高くなっていた。

SCD 遺伝子型が VK 型の集団に比べ VA 型の集団は C18:1 の割合が平均 1.9%、MUFA の割合は平均 2.4%高くなっており、VV 型の集団に比べ AA 型の集団は C18:1 の割合が平均 2.8%、MUFA の割合は平均 3.4%高くなっていた。雌牛では C14:1 の割合のみ、SCD 遺伝子型間で有意な差が認められ、VV 型、VA 型に比べ AA 型で C14:1 の割合は有意に高くなっていた。

次に MUFA 割合に対する SCD 遺伝子型の効果に加え、性別、出生年度、出荷年度、出荷月齢、肥育農家、および一代祖の MUFA 割合に対する効果を見つけるため相関係数を求めた。その結果、性別、出生年度、出荷月齢、および SCF 遺伝子型は MUFA 割合と有意の相関があった（表７）。MUFA 割合に対する肥育農家と一代祖の相関はどちらも p<0.05 ではあったものの p<0.1 であり、肥育農家間に一代祖の違いによって MUFA 割合に差が生じる可能性が認められた。次に、性別、出生年度、出荷年度、出荷月齢、肥育農家、および一代祖の各因子の効果を考慮しながら MUFA 割合に対する SCD 遺伝子型の効果を調べた。SCD 遺伝子型とこれらの因子を含む 2 变量の分散分析を行った。その結果

表３ SCD 遺伝子型の遺伝子型頻度

<table>
<thead>
<tr>
<th>遺伝子型</th>
<th>頻度</th>
<th>頭数（去勢・雌）</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>0.475</td>
<td>141 (128/13)</td>
</tr>
<tr>
<td>VA</td>
<td>0.431</td>
<td>128 (110/18)</td>
</tr>
<tr>
<td>VV</td>
<td>0.094</td>
<td>28 (22/6)</td>
</tr>
</tbody>
</table>

表４ SCD 遺伝子型の対立遺伝子型頻度

<table>
<thead>
<tr>
<th>対立遺伝子型</th>
<th>頻度</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.690</td>
</tr>
<tr>
<td>V</td>
<td>0.310</td>
</tr>
</tbody>
</table>
表 5 SCD 遺伝子型別の枝肉形質値

<table>
<thead>
<tr>
<th>枝肉形質</th>
<th>遺伝子型</th>
<th>去勢</th>
<th>雌</th>
<th>去勢</th>
<th>雌</th>
</tr>
</thead>
<tbody>
<tr>
<td>枝肉重量（kg）</td>
<td>AA</td>
<td>416.8</td>
<td>38.6</td>
<td>376.2</td>
<td>42.5</td>
</tr>
<tr>
<td></td>
<td>VA</td>
<td>415.5</td>
<td>38.0</td>
<td>370.2</td>
<td>40.1</td>
</tr>
<tr>
<td></td>
<td>VV</td>
<td>417.0</td>
<td>45.3</td>
<td>381.8</td>
<td>34.6</td>
</tr>
<tr>
<td>ロース芯面積（cm²）</td>
<td>AA</td>
<td>53.6</td>
<td>6.2</td>
<td>54.2</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>VA</td>
<td>54.0</td>
<td>8.2</td>
<td>51.9</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>VV</td>
<td>53.4</td>
<td>7.2</td>
<td>55.0</td>
<td>3.9</td>
</tr>
<tr>
<td>バラの厚さ（cm）</td>
<td>AA</td>
<td>7.64</td>
<td>0.72</td>
<td>7.52</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>VA</td>
<td>7.55</td>
<td>0.80</td>
<td>7.41</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>VV</td>
<td>7.67</td>
<td>0.81</td>
<td>7.62</td>
<td>1.04</td>
</tr>
<tr>
<td>皮下脂肪厚（cm）</td>
<td>AA</td>
<td>2.23</td>
<td>0.59</td>
<td>2.25</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>VA</td>
<td>2.24</td>
<td>0.73</td>
<td>2.26</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>VV</td>
<td>2.37</td>
<td>0.93</td>
<td>2.63</td>
<td>0.70</td>
</tr>
<tr>
<td>步留基準値</td>
<td>AA</td>
<td>74.3</td>
<td>1.0</td>
<td>74.7</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>VA</td>
<td>74.3</td>
<td>1.4</td>
<td>74.5</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>VV</td>
<td>74.1</td>
<td>1.2</td>
<td>74.5</td>
<td>1.2</td>
</tr>
<tr>
<td>BMS No.</td>
<td>AA</td>
<td>6.10</td>
<td>1.81</td>
<td>5.62</td>
<td>1.69</td>
</tr>
<tr>
<td></td>
<td>VA</td>
<td>5.72</td>
<td>2.03</td>
<td>6.11</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>VV</td>
<td>5.23</td>
<td>2.02</td>
<td>5.33</td>
<td>1.80</td>
</tr>
<tr>
<td>BCS No.</td>
<td>AA</td>
<td>3.69</td>
<td>0.57</td>
<td>3.85</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>VA</td>
<td>3.74</td>
<td>0.58</td>
<td>3.78</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>VV</td>
<td>3.73</td>
<td>0.62</td>
<td>4.00</td>
<td>0.58</td>
</tr>
<tr>
<td>特価（円/kg）</td>
<td>AA</td>
<td>2394</td>
<td>269</td>
<td>2281</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>VA</td>
<td>2332</td>
<td>357</td>
<td>2388</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>VV</td>
<td>2293</td>
<td>282</td>
<td>2245</td>
<td>131</td>
</tr>
</tbody>
</table>

表 6-1 SCD 遺伝子型別の胸最長筋内脂肪酸組成

<table>
<thead>
<tr>
<th>脂肪酸</th>
<th>遺伝子型</th>
<th>去勢（%）</th>
<th>雌</th>
<th>去勢</th>
<th>雌</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12:0</td>
<td>AA</td>
<td>0.072</td>
<td>0.028</td>
<td>0.068</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>VA</td>
<td>0.072</td>
<td>0.029</td>
<td>0.073</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>VV</td>
<td>0.086</td>
<td>0.027</td>
<td>0.051</td>
<td>0.031</td>
</tr>
<tr>
<td>C14:0</td>
<td>AA</td>
<td>2.93</td>
<td>0.46</td>
<td>2.79</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>VA</td>
<td>3.11</td>
<td>0.55</td>
<td>2.84</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>VV</td>
<td>3.36</td>
<td>0.38</td>
<td>2.96</td>
<td>0.77</td>
</tr>
<tr>
<td>BMS No.</td>
<td>AA</td>
<td>6.07</td>
<td>0.24</td>
<td>5.86</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>VA</td>
<td>6.05</td>
<td>0.25</td>
<td>5.84</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>VV</td>
<td>6.08</td>
<td>0.26</td>
<td>5.87</td>
<td>0.24</td>
</tr>
</tbody>
</table>

異なる文字間では最小二乗平均の差が遺伝子型間で有意（p< 0.05）
表6-2 続き

<table>
<thead>
<tr>
<th>脂肪酸</th>
<th>伝染子型</th>
<th>去勢</th>
<th>雌</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUFA</td>
<td>AA</td>
<td>56.9±2.8</td>
<td>58.3±2.7</td>
</tr>
<tr>
<td></td>
<td>VA</td>
<td>55.9±2.9</td>
<td>57.4±2.5</td>
</tr>
<tr>
<td></td>
<td>VV</td>
<td>53.5±3.2</td>
<td>58.3±3.3</td>
</tr>
<tr>
<td>USFA</td>
<td>AA</td>
<td>59.9±2.8</td>
<td>61.5±3.1</td>
</tr>
<tr>
<td></td>
<td>VA</td>
<td>58.9±2.9</td>
<td>60.5±2.3</td>
</tr>
<tr>
<td></td>
<td>VV</td>
<td>56.6±3.4</td>
<td>61.2±3.8</td>
</tr>
</tbody>
</table>

注 異なる文字間では遺伝子型間の最小二乗平均の差が有意（p<0.05）

表7 一価不飽和脂肪酸（MUFA）割合と各種要因との相関

<table>
<thead>
<tr>
<th>要因</th>
<th>相関</th>
<th>P 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>性別</td>
<td>-0.187</td>
<td>**(0.0012)</td>
</tr>
<tr>
<td>出生年度</td>
<td>-0.044</td>
<td>(0.4431)</td>
</tr>
<tr>
<td>出荷年度</td>
<td>-0.117</td>
<td>*(0.0437)</td>
</tr>
<tr>
<td>出荷月齢</td>
<td>0.168</td>
<td>**(0.0035)</td>
</tr>
<tr>
<td>肥育農家</td>
<td>0.101</td>
<td>(0.0832)</td>
</tr>
<tr>
<td>代祖</td>
<td>0.108</td>
<td>(0.0610)</td>
</tr>
<tr>
<td>SCD遺伝子型</td>
<td>-0.244</td>
<td>***(0.0001)</td>
</tr>
</tbody>
</table>

表8 MUFA割合について性別・SCD遺伝子型の
2次配置分散分析表

<table>
<thead>
<tr>
<th>変動因</th>
<th>自由度</th>
<th>平均平方</th>
<th>P 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>性別</td>
<td>1</td>
<td>113.1</td>
<td>0.0003</td>
</tr>
<tr>
<td>SCD遺伝子型</td>
<td>2</td>
<td>92.4</td>
<td>0.0001</td>
</tr>
<tr>
<td>誤差</td>
<td>280</td>
<td>8.4</td>
<td></td>
</tr>
</tbody>
</table>

表9 MUFA割合について出荷年度・SCD遺伝子型の
2次配置分散分析表

<table>
<thead>
<tr>
<th>変動因</th>
<th>自由度</th>
<th>平均平方</th>
<th>P 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>出荷年度</td>
<td>2</td>
<td>27.9</td>
<td>0.0417</td>
</tr>
<tr>
<td>SCD遺伝子型</td>
<td>2</td>
<td>84.3</td>
<td>0.0001</td>
</tr>
<tr>
<td>誤差</td>
<td>279</td>
<td>8.7</td>
<td></td>
</tr>
</tbody>
</table>

表10 MUFA割合について出荷月齢・SCD遺伝子型の
2次配置分散分析表

<table>
<thead>
<tr>
<th>変動因</th>
<th>自由度</th>
<th>平均平方</th>
<th>P 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>出荷月齢</td>
<td>1</td>
<td>39.2</td>
<td>0.0348</td>
</tr>
<tr>
<td>SCD遺伝子型</td>
<td>2</td>
<td>77.8</td>
<td>0.0002</td>
</tr>
<tr>
<td>誤差</td>
<td>280</td>
<td>8.7</td>
<td></td>
</tr>
</tbody>
</table>

図1 MUFA割合に対する性別とSCD遺伝子型の効果

図2 MUFA割合に対する出荷年度とSCD遺伝子型の効果

図3 MUFA割合に対する出荷月齢とSCD遺伝子型の効果

果、SCD遺伝子型の他に、性別、出荷年度、あるいは出荷月齢を考慮した場合にはMUFA割合に対する2因子の効果はいずれも有意となった（表8-10）。SCD遺伝子型で最小二乗平均の差の検定を行った結果、性別、出荷年度、あるいは出荷月齢の効果を考慮した場合にもSCD 3遺伝子型間の差はいずれも有意となった。また、性別、出生年度、出
荷年度、出荷月齢、肥育農家、および一交代のいずれの因子もSCD遺伝子型の間で有意な交互作用は認められなかった。これより、性別や出荷年度、出荷時月齢はMUFA割合に影響を与える可能性のある因子である一方、これらを考慮してもSCD遺伝子型はMUFA割合に対して効果があることが示唆された。

雌牛と公牛それぞれについてMUFA割合に対するSCD遺伝子型の効果を調べると、雌牛ではSCD遺伝子型間でMUFA割合に差がないのに対し、公牛ではMUFA割合がV型＜VA型＜AA型の順に高くなっており（表6、図1）、これより、雌牛に比べ公牛は平均MUFA割合が高いものので、MUFA割合に対するSCD遺伝子型の効果は現れやすいと考えられた。一方雌牛では既にMUFA割合が十分に高く、SCD遺伝子型の効果によってMUFA割合が更に上昇することは困難なレベルにまで達している可能性も考えられた。

出荷年度については、平成16年度はサンプル数が少ないが、平成17年度と平成18年度を比較すると、同じSCD遺伝子型群におけるSCD遺伝子型集団の内では、平成17年度の集団が平成18年度の集団に比べMUFA割合が高い傾向が見られた（図2）。

SCD遺伝子型がAA型の場合には、MUFA割合は出荷時月齢と相関して高くなる傾向が認められた（図3）。出荷時月齢とMUFA割合の相関はSCD遺伝子型VA型ではAA型より相関の程度が低下し、VV型ではほぼ無相関になってMUFA割合に対する月齢の効果は全く見られなかった。

出荷月齢を延長するとMUFA割合が上昇する可能性は以前より指摘されていたが4)，本結果からは、出荷月齢の延長伴ってMUFA割合が上昇する効果はSCD遺伝子型がAA型の時に最も高くなる可能性が示された。

以上のように、岐阜県内で処理された黒毛和種肥育牛では、胸長筋内脂肪の脂肪酸組成はSCD遺伝子型によって異なり、飽和脂肪酸C14:0やC18:0の割合はV型＞VA型＞AA型の順に低くなること、一価不飽和脂肪酸C14:1、C18:1、MUFAの割合はV型＜VA型＜AA型の順に高くなることが示された。性別や出荷年度、出荷月齢はMUFA割合に影響を与える因子だが、MUFA割合に対するSCD遺伝子型の効果は、性別や出荷年度、出荷月齢を考慮した場合にも存在することが示された。

脂肪酸の合成には、SCDの他に脂肪酸合成酵素fatty acid synthase (FAS)や複数の鎖長延長酵素、アセチルCoAカルボキシラーゼ (ACC)、ジアシルグリセロールシルトランスフェラーゼ(DGAT)、などの多くの酵素が関与する。また、SCD遺伝子の転写因子であるSREBP-1のように、これらの酵素の遺伝子発現を制御している因子や、成長ホルモンのように刺激因子として関与する因子も存在する。このように今後、胸長筋内脂肪の脂肪酸組成を考察して分子遺伝育種を目指す際には、これらの因子の効果や因子間の相互作用についても留意する必要がある。

文献

2) 井上勝彦・辻壮一，ステアロイル-CoA デサチュラーゼの遺伝子型に基づき、牛肉の風味や食感の良さ等を判定する方法特許2003-042076号. (2003)

4) 岩本英治・岩木史之・岡章生，肥育期間の違いが体脂肪の産肉性に及ぼす影響. 平成15年度近畿中国四国農業研究成果情報. (2003)
Genotype of bovine stearoyl-CoA desaturase and fatty acid composition in Japanese Black cattle.

Tamako MATSUHASHI, Shin MARUYAMA, Eisaku TSUNEISHI 1), Naohiko KOBAYASHI, Noboru HAYASHI, Yoichiro HOSHINO, Kenji SAKAI

1) National Agricultural Research Center for Kyushu Okinawa Region.

Abstract

Bovine stearoyl-CoA desaturase (SCD) is the enzyme that oxidizes saturated fatty acids to monounsaturated fatty acids (MUFA). Bovine SCD 878C>T SNP on exon 5 has been reported to affect fatty acid composition of the fat.

In this study, we investigated the effect of the SCD SNP on fatty acid composition of fat in the longissimus muscle to see the possibility of using it as a breeding marker for the fattening Japanese Black cattle. Tissue samples and carcass data were collected from 297 Japanese Black cattle slaughtered from 2004 to 2006 in Gifu Prefecture. Crude fat content of the muscle was determined, fatty acid composition of the fat was analyzed and its relation to SCD genotypes determined by the PCR-RFLP was examined.

Genotypic frequencies of SCD gene were 0.475, 0.431 and 0.09 for genotypes of AA, VA and VV, respectively. In steers, fatty acid composition of the fat varied among SCD genotypes. Ratios of C14:0 and C18:0 decreased and ratios of C14:1 and C18:1 increased, as the number of A alleles increased. Thus, the average ratio of MUFA to total fatty acids was by 3.4 % higher in AA steers and by 2.4 % higher in VA steers than that in VV steers. Such effects as in steers were not observed in cows. Sex, marketed age of month and marketed year had some influence on MUFA ratio on the fat. SCD genotypes showed statistically significant effects on the MUFA ratio, although sex, marketed age of month and marketed year had some influence on it. By the way, there was no appreciable association between SCD genotypes and carcass traits both in steers and cows.

These results suggest that the SCD SNP on exon 5 may be used as a breeding marker to control the fatty acid composition of fat in the longissimus muscle.

(Key word: Japanese Black cattle, stearoyl-CoA desaturase, fatty acid composition, carcass trait)