ワイン酵母、焼酎酵母、清酒酵母を用いた米焼酎・芋焼酎醪に含まれる醸造産物の違い

<table>
<thead>
<tr>
<th>誌名</th>
<th>日本醸造協会誌 = Journal of the Brewing Society of Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSN</td>
<td>09147314</td>
</tr>
<tr>
<td>著者</td>
<td>中山, 俊一 山本, 佳奈子 西森, 大貴 徳岡, 昌文 門倉, 利守 中里, 厚実</td>
</tr>
<tr>
<td>巻/号</td>
<td>112巻3号</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 197-205</td>
</tr>
<tr>
<td>発行年月</td>
<td>2017年3月</td>
</tr>
</tbody>
</table>
Brewing characteristics of shochu made from rice and sweet potato brewed by shochu, wine, and sake yeasts

Shunichi Nakayama, Kanako Yamamoto, Hirotaka Nishimori, Masafumi Tokuoka, Toshimori Kadokura*, Atsumi Nakazato

(Department of Fermentation science and Technology, Faculty of Applied Bio-science, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan)

Rice and sweet potato shochu were brewed by shochu, sake, and wine yeasts selected for their high citric acid resistance. The alcohol concentrations of rice and sweet potato shochu moromi brewed by wine and shochu yeasts were equal to that of control shochu yeast strain SH4, while the alcohol concentrations of rice shochu moromi brewed by sake yeasts were higher than that of strain SH4. The ethyl caproate concentration of sake yeast strains K6 and K7 was the highest in rice shochu moromi, while the ethyl caproate in sweet potato shochu moromi was not detected. The isobutyl acetate concentration brewed by wine yeasts was the highest in both the rice and sweet potato shochu moromi. The principal component analysis based on their aroma and organic acids components showed that each brewing yeast exhibited a different pattern compared to that of control strain SH4. This study showed that rice or sweet potato shochu exhibiting various aroma components can be brewed by using sake and wine yeast strains.

Key words: 米焼酎・芋焼酎・香気成分・醸造酵母

繰言

焼酎消費量は平成19年度までは伸び続け、低迷するアルコール消費量の中で好調であった焼酎も平成20年度以降減少傾向にあり今後も縮小傾向が続く可能性が高い1)。一方、海外における消費動向から焼酎は製品ライフサイクルの成長期に入ると期待されている1)。国内外での焼酎消費量を増加させる一つの方法は、これまで焼酎を好んで飲んでこなかった層に対する市場開拓であり、そのためには新規で多様な製品を提供することが挙げられる。焼酎を特徴づける主要成分の一つに香気成分が挙げられるが、これは主に原料由来の成分と酵母の発酵より生じる成分である。そのため、これまでに焼酎の多様化を目指して、特徴ある原料や新規取得された焼酎酵母による多様な酒類の醸造が試みられてきた2-4)。

* 連絡先（Corresponding author）, kadokura@nodai.ac.jp
本論文については、*印著書を御連絡下さい

この様に、使用する酵母を変えることで多様な香味の焼酎を醸造することが期待される。

醸造酵母には各醸造適性に合わせた酵母が利用されており、焼酎には焼酎酵母、ワインにはワイン酵母、清酒には清酒酵母がそれぞれ利用されている。それぞれの醸造環境は極端であり、例えば焼酎では焼酎釜が発生するクエン酸により低 pH 環境下で醸造される。

様々な酵母利用により多様な焼酎を醸造することが期待されるが、例えば清酒酵母きょうかい 9 号を焼酎醸造に利用した場合、アルコール発酵能が低いことが報告されている。そのため、これまで焼酎醸造に利用されてきた酵母以外の酵母を用いる場合、発酵能の維持及び香味の多様性について調べる必要がある。

そこで本研究では、本研究室保有の代表的な酵造酵母（焼酎酵母、清酒酵母、ワイン酵母）の中から低 pH 環境でも高い生育能を有し焼酎醸造にも利用可能な酵造酵母を選別した。また、これらの酵造酵母を用いて、半焼酎と焼酎を醸造し、各酵造酵母の発酵特性を比較することで焼酎醸造時の各酵造酵母の特性に関する知見を得た。

実験方法

1. 使用菌株
基準となる焼酎酵母として醸造協会頒布のきょうかい酵母焼酎用 2 号（以降 SH4 と表記）を使用した。
過去に当研究室で泡盛醸造所から分離した泡盛酵母 S3、S5、S7、S8、S10、焼酎醸造所から分離した S18、S19、S21、S22、S23 を焼酎酵母として用いた。上記の通り、S3、S5、S7、S8、S10 は正しくは泡盛酵母であるが、以降の実験では分かり易くなるため焼酎酵母として記載する。清酒酵母はきょうかい清酒酵母 K1、K2、K3、K4、K5、K6、K7、K8、K10、No. 28 を使用した。ワイン酵母として、基準となる IFO2260（OC2）、過去に応用微生物研究所よりワイン酵母として分譲頂いた IAM4219、IAM4224、IAM4250、IAM4257、IAM4260、IAM4263、IAM4266 を使用した。なお、IAM の菌株は IFO に寄託されているとのことであるが、本研究で使用した IAM 株は IFO 保有のリストには掲載されていない。

2. クエン酸耐性試験
各酵母を YPD 培地（酵母エキス 10 g/L、ポリペプトン 20 g/L、グルコース 20 g/L）にて一晩 30℃にて前培養した。各培養液から菌体を遠心分離にて集菌後、滅菌水で 2 回洗浄した。これらの溶液を OD660nm = 0.1 になるよう、pH 無調整（pH 6.5）の YPD 培地（YPD）、クエン酸にて pH 2.5 に調整した YPD 培地（YPD pH 2.5）に植菌した。30℃にて静置培養し、24 時間、48 時間、72 時間後の OD660nm を測定した。

3. 焼酎小仕込試験
クエン酸耐性を有する各醸造酵母を用い小仕込試験を行った。米焼酎の小仕込では、一次酵母では酵母 24 g と汲み水 30 mL と YM 培地（酵母エキス 3 g/L、麦芽エキス 3 g/L、ポリペプトン 5 g/L、グルコース 10 g/L）にて 3 日間静置培養した酵母を混合し、2 日間 25℃でインキュベートした。二次酵母では白米 66 g と汲み水 114 mL を追加し 4 日間 25℃でインキュベートした。蒸焼酎の小仕込では、一次酵母では酵母 40 g と汲み水 50 mL と YM 培地にて 3 日間静置培養した酵母を混合し 3 日間 25℃でインキュベートした。二次酵母では黄金千貫 200 g と汲み水 110 mL を追加し 6 日間 25℃でインキュベートした。麹は 80% エタノールに 30 分浸漬し殺菌し、汲み水はオートクレーブにて滅菌した水道水を用いた。菌種操作、サンプリングはクリーンベンチ内で行った。各小仕込とも独立した 3 速の仕込みを行った。

4. アルコール濃度と香気成分の分析
醸造物のアルコール濃度はアルコメイト AL-3（株式会社ウッドソン）にて測定した。有機酸量は既報 5) に準じて行った。醛中の香気成分は Agilent Technolog 社のヘッドスペース付ガスクロマトグラフ質量分析計にて分析した。サンプルの加温注入法はヘッドスペースサンプラ 7697A を用い、20 mL バイアルに 1.8 mL のサンプルと 0.2 mL の内部標準液（2.5 ppb n-アミルアルコール）を混合し、50℃で 30 分間加温し分析に供与した。香気成分の分析は、DB-WAX カラム（60 m × 0.25 mm）を用い、5 分間 50℃で保持し、10℃/min となるよう 230℃まで昇温した。230℃にて 5 分間保持した。

5. 主成分分析
定量した香気成分を基に、統計ソフト IBM SPSS を用いて主成分分析を行った。
実験結果及び考察

1. クエン酸耐性酵母の選抜

pH無調整のYPD培地で培養した場合、全ての焼酎酵母は24時間後にOD_{600nm}=6.0を超える旺盛な生育を示した。一方、クエン酸にpH 2.5に調整したYPD培地で、SH4 (OD_{600nm}=2.73) よりも高い増殖能を示したのは、S10 (OD_{600nm}=4.25), S3 (OD_{600nm}=3.98), S5 (OD_{600nm}=3.47), S18 (OD_{600nm}=2.97) であった。（Fig.1a）。

YPD pH 2.5での清酒酵母の生育はSH4と比較するとわずかに低かった。清酒酵母の中で比較的低いクエン酸耐性を示したのはK6 (OD_{600nm}=2.54), K7 (OD_{600nm}=2.24), K5 (OD_{600nm}=2.02) であった（Fig.1b）。

YPD pH 2.5でのワイン酵母の生育はSH4と同程度であったが、ワイン酵母ではIAM4224 (OD_{600nm}=3.39), IAM4219 (OD_{600nm}=3.17), IAM4257 (OD_{600nm}=2.83), IAM4266 (OD_{600nm}=2.83) が高いクエン酸耐性を示した（Fig.1c）。

以下の様に、初発pH 2.5のYPD培地を用いた場合、焼酎酵母とワイン酵母は比較的高い増殖能を示したのに対し、清酒酵母の生育能は低かった。以降の実験では、高いクエン酸耐性を示す焼酎酵母としてSH4, S3, S5, S10の4株を、清酒酵母ではK3, K5, K6, K7の4株を、ワイン酵母ではIAM4219, IAM4257, IAM4266, ワイン酵母の基準株であるIFO2260の4株を使用し米と芋を原料として焼酎の小仕込試験を行ない、SH4との香気成分の違いを比較した。

2. 米焼酎の小仕込試験

2.1 アルコール生成量

高いクエン酸耐性を有する前述の醸造酵母を用いて米焼酎の小仕込試験を行った。二次酢4日目のアルコール濃度をTable 1に示した。焼酎酵母S10のアルコール濃度はSH4より低かったものの、S3, S5はSH4と同程度のアルコール生成量を示した。ワイン酵母はSH4よりもやや高い発酵能を示し、醸中のアルコール濃度と発酵歩合はSH4より高かった。清酒酵母はpH 2.5に調整したYPD培地を用いた生育試験では焼酎酵母やワイン酵母よりも低い生育能を示したが（Fig.1b）、米焼酎の醸中ではこれと一致せず最も高いアルコール生成量を示した。協会酵母K9を用いた米焼酎小仕込の結果、発酵が若干おくれるとの報告とは異なり6)。本研究で用いた清酒酵母は旺盛に発酵した。各清酒酵母においても生成する香気成分等が異なる報告もあることから6)、米焼酎小仕込時の発酵特性についてはそれぞれの株で性質が異なることが予想される。以上のことから、焼酎酵母、ワイン酵母ともにSH4と同程度のアルコール生成能を有し、さらに清酒酵母はより優れたアルコール生成能を有していた。

2.2 各種醸造酵母により醸造した米焼酎中の香気成分比較

二次醸4日目の香気成分生成量をTable 1に示した。各醸造酵母ともSH4と比較して異なる成分組成を示

Fig. 1 Comparison of cell growth among yeasts with the presence (white) or absence (gray) of citric acid: shochu yeasts(a): sake yeasts(b) wine yeasts(c)。“
Table 1 Comparison of fermentation products in rice shochu moromi brewed by shochu, sake, and wine yeasts.

<table>
<thead>
<tr>
<th>Alcohol conc. (%)</th>
<th>Shochu yeast</th>
<th>Sake yeast</th>
<th>Wine yeast</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH</td>
<td>S3</td>
<td>S5</td>
<td>K3</td>
</tr>
<tr>
<td>15.4±0.1</td>
<td>15.8±0.2</td>
<td>16.3±0.3*</td>
<td>13.6±0.9*</td>
</tr>
</tbody>
</table>

Aroma compounds (mg/L)

Alcohols

<table>
<thead>
<tr>
<th>Isoamyl alcohol</th>
<th>305±13</th>
<th>360±8</th>
<th>343±2</th>
<th>366±6</th>
<th>272±3</th>
<th>266±15</th>
<th>266±10</th>
<th>260±14</th>
<th>378±15</th>
<th>367±10</th>
<th>360±16</th>
<th>339±14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex-2-propanol</td>
<td>17.1±1.02</td>
<td>14.00±0.57</td>
<td>15.66±0.39</td>
<td>11.49±0.09</td>
<td>16.68±1.41</td>
<td>21.06±4.41</td>
<td>15.71±1.15</td>
<td>20.59±3.74</td>
<td>16.13±0.79</td>
<td>20.93±0.50</td>
<td>21.46±1.22</td>
<td>16.43±0.48</td>
</tr>
<tr>
<td>β-Phenethyl alcohol</td>
<td>186±7</td>
<td>293±19</td>
<td>293±6</td>
<td>276±17</td>
<td>257±21</td>
<td>212±25</td>
<td>221±7</td>
<td>177±24</td>
<td>195±3</td>
<td>190±1</td>
<td>200±12</td>
<td>165±22</td>
</tr>
<tr>
<td>A/P ratio</td>
<td>17.8±2</td>
<td>25.7±0</td>
<td>21.8±9</td>
<td>31.8±2</td>
<td>16.3±1</td>
<td>12.63±6</td>
<td>18.6±14</td>
<td>14.0±9</td>
<td>23.4±4</td>
<td>17.5±3</td>
<td>16.7±7</td>
<td>20.6±5</td>
</tr>
<tr>
<td>B/P ratio</td>
<td>9.5±5</td>
<td>17.4±8</td>
<td>15.2±4</td>
<td>24.6±8</td>
<td>10.2±7</td>
<td>5.67±6</td>
<td>8.6±8</td>
<td>8.5±8</td>
<td>25.6±6</td>
<td>17.0±8</td>
<td>17.1±3</td>
<td>22.0±1</td>
</tr>
<tr>
<td>A/B ratio</td>
<td>1.87</td>
<td>1.47</td>
<td>1.44</td>
<td>1.29</td>
<td>1.59</td>
<td>2.23</td>
<td>1.96</td>
<td>1.64</td>
<td>0.91</td>
<td>1.03</td>
<td>0.98</td>
<td>0.94</td>
</tr>
<tr>
<td>A/ (B + P) ratio</td>
<td>1.69</td>
<td>1.39</td>
<td>1.35</td>
<td>1.24</td>
<td>1.45</td>
<td>1.89</td>
<td>1.76</td>
<td>1.47</td>
<td>0.88</td>
<td>0.97</td>
<td>0.92</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Esters

<table>
<thead>
<tr>
<th>Ethyl acetate</th>
<th>52.6±8.75</th>
<th>45.7±4.85</th>
<th>55.7±0.56</th>
<th>55.7±5.13</th>
<th>74.4±11.40</th>
<th>38.27±15.43</th>
<th>77.47±7.97</th>
<th>87.69±26.40</th>
<th>63.73±12.84</th>
<th>63.63±4.23</th>
<th>82.12±14.38</th>
<th>73.68±15.33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoamyl acetate</td>
<td>2.03±0.46</td>
<td>1.58±0.37</td>
<td>1.76±0.02</td>
<td>1.76±0.21</td>
<td>2.69±0.48</td>
<td>1.64±0.80</td>
<td>2.97±0.24</td>
<td>3.06±0.90</td>
<td>3.31±0.85</td>
<td>2.75±0.17</td>
<td>3.14±1.13</td>
<td>2.65±0.78</td>
</tr>
<tr>
<td>Isobutyl acetate</td>
<td>0.54±0.04</td>
<td>0.28±0.01</td>
<td>0.28±0.00</td>
<td>0.28±0.03</td>
<td>0.37±0.02</td>
<td>0.33±0.11</td>
<td>0.31±0.02</td>
<td>0.44±0.14</td>
<td>0.86±0.20</td>
<td>0.74±0.06</td>
<td>0.69±0.26</td>
<td>0.72±0.21</td>
</tr>
<tr>
<td>β-Phenethyl acetate</td>
<td>0.83±0.21</td>
<td>0.79±0.04</td>
<td>0.50±0.01</td>
<td>0.50±0.04</td>
<td>1.56±0.01</td>
<td>0.99±0.04</td>
<td>1.06±0.08</td>
<td>1.35±0.17</td>
<td>0.98±0.05</td>
<td>1.27±0.03</td>
<td>1.41±0.05</td>
<td>0.69±0.02</td>
</tr>
<tr>
<td>Ethyl caproate</td>
<td>0.00±0.00</td>
<td>0.02±0.00</td>
<td>0.02±0.01</td>
<td>0.02±0.00</td>
<td>0.03±0.00</td>
<td>0.01±0.01</td>
<td>0.06±0.00</td>
<td>0.07±0.00</td>
<td>0.01±0.01</td>
<td>0.05±0.00</td>
<td>0.01±0.00</td>
<td>0.01±0.01</td>
</tr>
<tr>
<td>Ethyl caprylate</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.45±0.89</td>
<td>1.76±1.47</td>
<td>1.47±0.89</td>
<td>1.64±1.47</td>
<td>0.88±0.97</td>
<td>0.92±0.90</td>
<td>0.90±0.90</td>
<td>0.90±0.90</td>
</tr>
<tr>
<td>Ethyl capratte</td>
<td>ND</td>
</tr>
</tbody>
</table>

Organic acids (mg/L)

Citrate	180.4±42	1875±59	1736±11	1821±23	1831±54	1708±67	1649±45	1724±24	1903±21	1873±70	1857±49	1903±86
Lactate	1067±96	858±121	561±39	708±65	600±82	606±154	647±41	486±86	425±35	475±9	401±37	483±30
Malate	416±18	228±7	247±32	147±30	375±29	165±55	309±37	254±36	242±56	190±9	262±41	366±78
Succinate	399±37	552±19	583±24	563±37	617±45	468±19	525±48	669±28	355±6	369±23	400±35	371±10

The standard deviation estimated from three independent experiments is noted in brackets. Asterisks indicate statistical significances \((p < 0.01)\)
した。特に顕著な差異はワイン酵母に見られ、SH4と比較してイソプロピルアルコールを2.2倍以上多く生成し、その酢酸エステルである酢酸イソプロピルも1.3～1.6倍高かった。これらの香気成分はいずれのワイン酵母においても他の醸造酵母よりも増加していた。

酢酸イソプロピルはパナナの果実香を付与することから、この生成量の高いワイン酵母を用いることで、従来とは異なる多様な米焼酎を醸造可能であることが示唆された。イソプロピルアルコールはバリンの生成あるいはバリンの取り込み後のエールリットと生成経路によって生成されるため7）、ワイン酵母はバリンの生成あるいは取り込みに違いがある可能性が示唆された。

清酒酵母については、イソアミルアルコール生成量でSH4と比較するとやや低下する傾向にあった。清酒中の吟醸香の一つであるカプロン酸エチルは清酒酵母であるK6、K7で生成量が最も高かった。また、K6とK7のみ酢酸イソアミル生成量がSH4より1.5倍以上高かった。米焼酎においては、イソアミルアルコールが少なくカプロン酸エチルが多いことが官能的に良好なることが報告されている8）。清酒酵母K6、K7はこれらの知見によく合致しておりアルコール生成能が高い菌株であることから、米焼酎醸造に優良な菌株であることが予想される。

焼酎酵母はSH4と類似した生成パターンを示したものの、S3、S5、S10についてはβ-フェニルエチルアルコール生成量が高かった。

以上の様に、各醸造酵母によって生成パターンが異なることから、多様な香気の米焼酎を醸造可能であることが明らかとなった。

2.3 各種醸造酵母により醸造した米焼酎醸造中の有機酸生成量比較

醸中の有機酸は酵母によって生成されるが、蒸留過程で移行する量は少ないことが知られている。この様に、蒸留後の呈味における有機酸の寄与は少ないものの、各醸造酵母の特性を比較するため二次膜4日目の有機酸を比較した（Table 1）。

SH4以外の焼酎酵母では、リンゴ酸と乳酸生成量がSH4より低くコハク酸生成量がわずかに高かった。清酒酵母においても乳酸生成量はSH4より低かったがリンゴ酸については株毎にバラつきがみられた。コハク酸生成量もわずかに増加しており、焼酎酵母と類似した生成様式を示した。ワイン酵母においては、乳酸生成量がSH4よりも低いことは焼酎酵母と清酒酵母と類似したが、コハク酸生成量はSH4と同程度であり酢酸生成量もSH4より増加する傾向にあった。

以上の様に、香気成分と同様生成する有機酸組成も各醸造酵母によって異なった。

2.4 米焼酎におけ各種醸造酵母の発酵産物に基づく主成分分析

Table 1に示した各醸造酵母が生成した香気成分と有機酸を基に主成分分析を行った結果をFig. 2に示す。
した。ワイン酵母 IAM4219, IAM4257, IAM4266, IF02260 同士、清酒酵母 K3, K5, K6, K7 同士、焼酎酵母 SH4, S3, S5, S10 同士はそれぞれ近い場所に位置した。このことは、各醸造酵母群で発酵過程が類似することを示した。それぞれの醸造酵母群に寄与する成分として、ワイン酵母ではイソプロチルアルコール、酢酸イソプロチル、酢酸などが挙げられ、清酒酵母ではカプロン酸エチル、A/B 比、A/(B + P) 比が挙げられ、焼酎酵母では β-フェニルエチルアルコールが挙げられた（Fig. 2b）。一方、焼酎酵母群、清酒酵母群、ワイン酵母群同士は別れた場所にプロットされたことから、それぞれの酵母群の発酵過程が異なることが示された。以上の様に、様々な醸造酵母を用いることで多様な香味を示す米焼酎を醸造可能であることが示唆された。

3. 烧酎酵の小仕込試験
3.1 アルコール生成量
烧酎酵小仕込時の二次醗 7 日目のアルコール濃度を Table 2 に示した。焼酎の場合と異なり、清酒酵母 K3 を除くすべての株が SH4 と比較してアルコール生成量に有意な差異はなく、多くの酵母で芋焼酎を醸造可能であった。

3.2 各種醸造酵母により醸造した芋焼酎中の香気成分比較
二次醗 7 日目の香気成分の生成量を Table 2 に示した。焼酎酵と同様、各種醸造酵母とも SH4 と比較して異なる成分生成を示したが、特にワイン酵母の香気成分は顕著な差異がみられた。SH4 と比較して、ワイン酵母はイソプロチルアルコールが 14～20 倍、酢酸イソプロチルが 3.6～5.5 倍の生成量であった。焼酎酵では酢酸イソアミルの生成量に大差はなかったが、焼酎酵では 2.0～2.6 倍であり、原料の違いによっても生成する香気成分の組成が異なった。

焼酎酵造酒時は K6, K7 が数値高いカプロン酸エチルの生成量を示したが、焼酎酵小仕込時には醗のカ
プロン酸エチルは検出されず、原料の違いにより酵母の代謝が異なることが想定された。清酒酵母においては酢酸β-フェニルエチル生成量が多い傾向がみられ
た。焼酎酵母においては、焼酎酵と同様 SH4 と類似の生成様式を示すものの β-フェニルエチルアルコール生成量が多く、SH4 との差異もみられた。

以上の様に、芋を原料として焼酎の小仕込をした場合も各醸造酵母において香気成分組成が異なることが明らかとなった。

3.3 各種醸造酵母により醸造した芋焼酎中の有機酸生成量比較
二次醗 7 日日の有機酸生成量を Table 2 に示した。有機酸生成量は焼酎酵と同様、いずれの醸造酵母でも SH4 と比較して顕著に低くしていた。清酒酵母においては、焼酎酵小仕込時に反対にコハク酸生成量が SH4 よりも低く、焼酎酵では酢酸生成量が高く、焼酎酵小仕込時に反対にコハク酸生成量が SH4 と同程度であっ
た。焼酎酵母においても米焼酎小仕込時と異なり、酢酸が増加していた。

以上の様に、有機酸組成は米焼酎と芋焼酎で異なっ

3.4 烧酎酵小仕込みにおける各種醸造酵母の発酵産物に基づく生成比率
Table 2 に示した各種醸造酵母が生成した香気成分と有機酸を基に主成分分析を行った結果を Fig. 3 に示し
た。ワイン酵母 IAM4219, IAM4257, IAM4266, IF02260 同士、清酒酵母 K3, K5, K6, K7 同士、焼酎酵母 SH4, S3, S5, S10 同士はそれぞれ近い場所に位置した。このことは米焼酎と同様に各種醸造酵母毎に発酵過程が類似することを示した。それぞれの醸造酵母に寄与する成分として、ワイン酵母ではイソプロチルアルコール、酢酸イソアミル、酢酸イソプロチル、リ
ンゴ酸などが挙げられ、焼酎酵とは異なる成分が寄与
していた。清酒酵母では A/B 比と A/(B + P) 比が挙げられ、焼酎酵母では β-フェニルエチルアルコールが挙げられた。一方、焼酎酵母群、清酒酵母群、ワイン酵母群同士は離れた場所にプロットされたことか
ら、焼酎酵の場合と同様それぞれの酵母群の発酵過程は異なったことが示唆される。この様に、様々な醸造酵母を用いることで多様な香味を示す芋焼酎を醸造可能であることが主成分分析の結果からも示唆された。

芋焼酎においては、イソアミルアルコールが少なく A/P 比と A/(P + B) 比が小さいことが報告されており、これに該当する酵
母は焼酎酵母では S3 と S10 が、清酒酵母では K6 が低かった。ワイン酵母ではこれらの値は SH4 より高かったが、多様性の観点からするとワイン酵母を用い
Table 2 Comparison of fermentation products in sweet potato shochu moromi brewed by shochu, sake, and wine yeasts.

<table>
<thead>
<tr>
<th></th>
<th>SH4</th>
<th>S3</th>
<th>S5</th>
<th>S10</th>
<th>K3</th>
<th>K5</th>
<th>K6</th>
<th>K7</th>
<th>IAM4219</th>
<th>IAM4257</th>
<th>IAM4266</th>
<th>IFO2260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol conc. (%)</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>12.6±0.1</td>
<td>12.2±0.4</td>
<td>12.6±0.2</td>
<td>12.0±0.4</td>
<td>12.1±0.1</td>
<td>12.5±0.2</td>
<td>12.8±0.3</td>
<td>12.3±0.1</td>
<td>12.1±0.2</td>
<td>12.4±0.1</td>
<td>12.5±0.3</td>
<td>12.3±0.2</td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Aroma compounds (mg/L)</td>
<td></td>
</tr>
<tr>
<td>Alcohols</td>
<td></td>
</tr>
<tr>
<td>Isoamyl alcohol</td>
<td>278±9</td>
<td>247±7</td>
<td>246±6</td>
<td>248±8</td>
<td>267±13</td>
<td>227±10</td>
<td>207±48</td>
<td>257±11</td>
<td>324±2</td>
<td>285±6</td>
<td>285±9</td>
<td>288±21</td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td>144±3</td>
<td>198±3</td>
<td>184±7</td>
<td>171±3</td>
<td>161±9</td>
<td>110±2</td>
<td>120±27</td>
<td>125±7</td>
<td>281±8</td>
<td>231±5</td>
<td>213±22</td>
<td>197±16</td>
</tr>
<tr>
<td>α-Propanol</td>
<td>16.84±1.50</td>
<td>18.46±0.71</td>
<td>27.35±13.16</td>
<td>17.76±1.59</td>
<td>17.42±0.53</td>
<td>17.02±1.72</td>
<td>13.88±0.30</td>
<td>15.13±1.07</td>
<td>21.66±0.86</td>
<td>19.40±0.52</td>
<td>19.40±10.89</td>
<td>18.44±1.15</td>
</tr>
<tr>
<td>β-Phenethyl alcohol</td>
<td>1.42±0.32</td>
<td>1.81±2</td>
<td>1.85±10</td>
<td>2.04±8</td>
<td>2.25±33</td>
<td>1.38±27</td>
<td>1.66±4</td>
<td>1.76±9</td>
<td>1.54±16</td>
<td>1.39±6</td>
<td>1.39±6</td>
<td>1.42±17</td>
</tr>
<tr>
<td>A/P ratio</td>
<td>1.56±0.32</td>
<td>1.34±0.4</td>
<td>0.98±3</td>
<td>1.38±0</td>
<td>1.53±34</td>
<td>1.33±20</td>
<td>1.64±4</td>
<td>1.70±0</td>
<td>1.48±16</td>
<td>1.39±6</td>
<td>1.39±6</td>
<td>1.46±17</td>
</tr>
<tr>
<td>B/P ratio</td>
<td>5.52±1.34</td>
<td>10.73±5.74</td>
<td>6.74±9.65</td>
<td>9.25±8</td>
<td>9.25±0</td>
<td>7.64±8.1</td>
<td>8.29±0</td>
<td>12.98±11.92</td>
<td>12.98±11.92</td>
<td>12.98±11.92</td>
<td>12.98±11.92</td>
<td></td>
</tr>
<tr>
<td>A/B ratio</td>
<td>2.54±1.04</td>
<td>1.25±0.13</td>
<td>1.33±1.45</td>
<td>1.66±1.6</td>
<td>1.66±31</td>
<td>1.27±1.72</td>
<td>1.72±0.6</td>
<td>1.53±0</td>
<td>1.15±12</td>
<td>1.23±1.23</td>
<td>1.23±1.23</td>
<td>1.46±1.23</td>
</tr>
<tr>
<td>A/ (B + P) ratio</td>
<td>1.74±1.14</td>
<td>1.14±1.16</td>
<td>1.13±1.31</td>
<td>1.50±1.5</td>
<td>1.79±1.5</td>
<td>1.56±1.83</td>
<td>1.83±0</td>
<td>1.67±1.14</td>
<td>1.14±1.14</td>
<td>1.33±1.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esters</td>
<td></td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>70.82±8.75</td>
<td>79.72±14.85</td>
<td>73.68±0.56</td>
<td>71.13±5.13</td>
<td>86.07±11.40</td>
<td>68.64±15.43</td>
<td>85.93±8.82</td>
<td>75.67±8.72</td>
<td>92.34±1.54</td>
<td>108.46±5.32</td>
<td>92.50±12.11</td>
<td>102.77±9.20</td>
</tr>
<tr>
<td>Isoamyl acetate</td>
<td>3.31±0.45</td>
<td>2.91±0.37</td>
<td>2.91±0.20</td>
<td>3.20±0.21</td>
<td>4.57±0.48</td>
<td>3.53±0.80</td>
<td>5.82±0.21</td>
<td>4.50±0.50</td>
<td>8.59±0.54</td>
<td>7.54±0.59</td>
<td>7.54±0.60</td>
<td>6.63±0.37</td>
</tr>
<tr>
<td>Isobutyl acetate</td>
<td>0.27±0.04</td>
<td>0.40±0.01</td>
<td>0.39±0.00</td>
<td>0.36±0.03</td>
<td>0.45±0.02</td>
<td>0.32±0.11</td>
<td>0.56±0.05</td>
<td>0.38±0.05</td>
<td>1.48±0.09</td>
<td>1.32±0.05</td>
<td>1.32±0.10</td>
<td>0.97±0.07</td>
</tr>
<tr>
<td>β-Phenethyl acetate</td>
<td>0.68±0.21</td>
<td>0.67±0.04</td>
<td>0.63±0.01</td>
<td>0.66±0.04</td>
<td>2.05±0.01</td>
<td>1.02±0.04</td>
<td>1.72±0.13</td>
<td>1.39±0.05</td>
<td>1.49±0.06</td>
<td>2.03±0.24</td>
<td>2.03±0.10</td>
<td>1.21±0.03</td>
</tr>
<tr>
<td>Ethyl caproate</td>
<td>ND</td>
</tr>
<tr>
<td>Ethyl caprylate</td>
<td>ND</td>
</tr>
<tr>
<td>Ethyl caprate</td>
<td>ND</td>
</tr>
<tr>
<td>Organic acids (mg/L)</td>
<td></td>
</tr>
<tr>
<td>Citrate</td>
<td>3840±74</td>
<td>3845±180</td>
<td>3566±99</td>
<td>3660±264</td>
<td>3532±87</td>
<td>3546±169</td>
<td>3195±96</td>
<td>3165±17</td>
<td>3486±130</td>
<td>3234±231</td>
<td>3258±67</td>
<td>3244±74</td>
</tr>
<tr>
<td>Lactate</td>
<td>969±247</td>
<td>683±25</td>
<td>480±142</td>
<td>565±79</td>
<td>539±45</td>
<td>526±50</td>
<td>346±46</td>
<td>311±92</td>
<td>617±45</td>
<td>484±22</td>
<td>642±92</td>
<td>460±71</td>
</tr>
<tr>
<td>Malate</td>
<td>697±67</td>
<td>634±28</td>
<td>621±66</td>
<td>677±17</td>
<td>642±19</td>
<td>604±25</td>
<td>640±37</td>
<td>540±23</td>
<td>967±37</td>
<td>745±29</td>
<td>817±25</td>
<td>970±52</td>
</tr>
<tr>
<td>Succinate</td>
<td>629±83</td>
<td>683±55</td>
<td>563±4</td>
<td>569±95</td>
<td>631±75</td>
<td>563±19</td>
<td>542±47</td>
<td>700±24</td>
<td>459±16</td>
<td>396±36</td>
<td>438±33</td>
<td>460±44</td>
</tr>
<tr>
<td>Acetate</td>
<td>422±152</td>
<td>533±61</td>
<td>558±127</td>
<td>698±158</td>
<td>311±127</td>
<td>291±46</td>
<td>257±26</td>
<td>518±69</td>
<td>328±98</td>
<td>431±80</td>
<td>350±69</td>
<td>351±58</td>
</tr>
</tbody>
</table>

The standard deviation estimated from three independent experiments is noted in brackets. Asterisks indicate statistical significances (p < 0.01).
ミルアルコールとイソブチルアルコールは米焼酎と芋焼酎で同程度の生成量であったのに対し、そのエステルであるチオ酸イソアミルと酢酸イソブチル生成量は芋焼酎において顕著に高かった。酢酸イソアミルやチオ酸イソブチル等のエステルは ATFI にコードされる alcohol acetyltransferase よって生成され、IAHI にコードされる esterase によって分解されることが知られている）。これら生成物と生分解酵素の活性のバランスによってチオ酸エステル類の生成量が決定されることが知られていることから、原料の違いによって酵母内のこれら生成物と分解に関する遺伝子発現や酵素活性が異なることが示唆された。

要約

本研究では、各醸造酵母を用いて焼酎醸造を行っても十分に発酵することが可能であり、酵母中の発酵成分も多様な香気成分組成を示した。特に、ワイン酵母を用いた場合チオ酸イソブチル等の果実香が強い米焼酎、清酒酵母 K6、K7 を用いた場合アルコール生成量が多くカプロン酸エチルを多く含む米焼酎を醸造可能であることが明らかとなった。また、発酵成分に基づいた主成分解析の結果からも各醸造酵母は基準株となっている SH4 とは異なる多様な発酵成分を示すことが明らかとなった。

謝辞

本研究は、日本酒造組合中央会委託研究「単式蒸留焼酎に係る委託調査研究」として行った。

文献

1) 喜多明夫，醸協，105，(7)，458-476(2012)
2) 谷村健，濱田明美，鬼東楠里，野崎直樹，甲斐孝憲，小川喜八郎，醸協，100，(1)，56-64(2005)
3) 高橋和則，大山修一，吉崎由美子，王賢尚徳，髙島貞夫，醸協，105，(8)，546-555(2010)
4) 湯生恵二，古屋和樹，山崎努，中山俊一，大場孝宏，末永光，小田淳史，中島康夫，醸協，107，(10)，775-781(2012)
6) 土谷紀美，木田健次，中川優，西村賢正，園田
Fig. 4 比較の1.イソアミルアルコール(a), イソブチルアルコール(b), イソアミルアセタート(c), イソブチルアセタート(d)の濃度が、清酒、焼酎、ワイン酵母で製造される酒造物の違いを示す。各アロマ成分は、アルコール濃度10%に換算された。灰色のバーは、米焼酎のアロマ濃度を示し、白いバーは、甘日焼酎のアロマ濃度を示す。

7) 大内弘造, 高岸正邦, 山本泰彦, 秋山裕一. 酒協. 59, 9 (1981)
8) 栗山泰一, 長友正弘, 山本孝雄, 吉村義雄, 渡辺康造. 酒協. 100, 11, 817-823 (2005)
10) 山本英樹, 森村茂, 水谷政美, 山田和望, 越智洋, 高山清子, 工藤哲三, 太田広人, 木田敏次. 酒協. 108, 1, 45 (2013)