青果用サツマイモ「ベニサツマ」の食味に関与する要因の解明

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>誌名</td>
<td>鹿児島県農業開発総合センター研究報告. 耕種部門 = Bulletin of the Kagoshima Prefectural Institute for Agricultural Development. Agricultural Research</td>
</tr>
<tr>
<td>ISSN</td>
<td>18818609</td>
</tr>
<tr>
<td>著者</td>
<td>久米, 隆志
池田, 健一郎
松崎, 哲士
柏木, 伸哉</td>
</tr>
<tr>
<td>巻/号</td>
<td>4号</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 23-31</td>
</tr>
<tr>
<td>発行年月</td>
<td>2010年3月</td>
</tr>
</tbody>
</table>
青果用サツマイモ「ベニサツマ」の食味に関与する要因の解明

久米隆志・池田健一郎*1・松崎哲士・柏木伸哉*2

要約
青果用サツマイモに対しては、近年、外観品質に加え、良食味へのニーズが高まっている。そこで、食味への影響が大きい「甘さ」に関与する要因をいもの内容成分と施肥量から解明した。

施肥量の増加によって、生いものβ－アミラーゼ活性が高まり、蒸しもののマルトース含量が増加し、いも食味（甘さ）が向上した。また、生いものてん粉含量が高いほど蒸しもののマルトース含量が増加した。

施肥量が同じでも、土壌の種類など栽培条件によりβ－アミラーゼ活性は異なった。地力の高い土壌では、施肥による食味向上に対する効果は明らかでなかったが、地力の低い土壌では、標準施肥の2倍施用により、てん粉含量が増加し、β－アミラーゼ活性が高まり、食味が向上した。

キーワード：甘さ、施肥、てん粉含量、β－アミラーゼ活性、マルトース

緒言
鹿児島県のサツマイモは、栽培面積14,000ha、生産量約40万トンのいずれも全国1位を占める（2008年）*1 要要所作である。生産量の内訳はてん粉原料用と施用用がそれぞれ約4割を占めている。てん粉の輸出自由化に伴い、てん粉原料用から青果・加工用サツマイモへの転換が求められているが、本県のサツマイモにおいて、青果用サツマイモの占める割合は栽培面積で約9％、生産量で約5％にとどまっている*2。青果用サツマイモの栽培面積および生産量を増やすためには、形状や皮色その他の外観品質や内容品質を高め、かつ品質にバラツキがないように、市場評価を高める必要がある。

青果用サツマイモに対する形状や皮色などの外観品質と栽培環境や栽培法との関係については、脇門ら*3が黒ボク、赤ボク、砂の混合でいも品質が向上すると報告しているほか、これまで多くの報告*4, 5 がなされている。一方、いも内品質についても、武田ら*6 がてん粉価と糖含量を高めるため、収穫前に低水分で栽培すること、大飼ら*7 が低温度で栽培した場合、マルトース含量が高まるることなどを報告している。これらの報告は栽培法の改善でサツマイモの食味が向上することを示唆している。

近年、青果用サツマイモに対しては、外観品質だけでなく食味に対するニーズも高まっていることから、本県を特徴的な土壌において、青果用サツマイモの食味向上のための栽培技術の改善方法を検討した。

「高知14号’の選抜系統である「ベニサツマ」は、肥大が早いため、早期間に比較的甘いサツマイモで、本県青果用サツマイモの栽培面積の80％を占めている。そこで、「ベニサツマ」を用いて、甘さ、食感、肉質、香りなど食味に関与する要因のうち、‘甘さ’に関与する要因をいも内容成分と施肥量、主に窒素施用量との関係から解析したので報告する。

試験材料および方法

1 土壌の種類および施肥量の違いがいも内容品質および食味に及ぼす影響

供試材料は、2004年から2006年の3カ年、鹿児島県農業開発総合センター大隅支場内のほ場で、異なる土壌および施肥条件で栽培された‘ベニサツマ’を用いた。すなわち、サツマイモ連作黒ボク土壌（以下、黒ボク土壌と略す）と10年以上作付けのない黒ボク＋赤ボク混層土壌（以下、混層土壌と略す）の2ほ場に、窒素成分で施肥量0.0（無施肥）、0.4（標準施肥）、0.8（2倍施肥）、1.2（3倍施肥）kg/aの4段階を設けた。2004年は配合肥料（窒素4％、リン酸20％、カリ9％）を用い、2006年は配合肥料（窒素5％、リン酸15％、カリ15％）を用いて、全量基肥で施用した。

絶縁概要は、畦幅80cm、株間35cmの黒マルチ栽培で、2004年の植付け期は4月22日、収穫期は8月18日、2005年は4月25日植付、8月24日収穫、2006年は5月2日植付、9月4日収穫で、いずれの年次も播種後120日前後で収穫した。収穫したものは15℃で冷蔵貯蔵した。

(連絡先)農産物加工研究指導センター
＊1 現熊毛支場 ＊2 現農産園芸課
内容成分の分析は、収穫貯蔵後、概ね10〜14日経過後
に、各区2反復、1区6個体で行った。蒸留水を蒸気
式蒸留機（アイホー製型式：ST-51H）で40分間蒸煮した
後、分析に供した。
水分は、105℃150分乾燥法で測定し、糖（フルクト
ース、グルコース、スクロース、マルトース）は、試
料をホモジナライズしたのち、80％エタノールで抽出し、
HPLCで定量した。分析カラムはAsahipakNH2Pを用いた。
でん粉含量は、上記抽出残を塩酸で加水分解後、DNS
法にでグルコースを定量し、0.9を乘じた。
蒸留水の食味官能試験は、農業開発総合センター
職員で実施し、対照区に対して、甘さについては＋2
（甘い）から－2（甘くない）、食感については＋2（良
い）から－2（悪い）、総合評価については、おいしさ
と称して＋2（おいしい）から－2（おいしくない）
までの5段階で評価した。
つるおよびその全窒素含量は、105℃乾燥後、ウイ
レーレ型粉碎機で粉碎し、硫酸-過酸化水素で湿式分解
後、水蒸気蒸留装置で測定した。

2 いもの食味（甘さ）に関する要因の解析
いものの食味、特に甘さに関する要因解析のため、
窒素施用量と生いものでん粉含量の関係、生いもので
ん粉含量と蒸留水のマールトース含量との関係、窒素
施用量と生いものβ-アミラーゼ活性との関係、β-
アミラーゼ活性と蒸留水のマールトース含量との関係
について分析した。
いものβ-アミラーゼ活性は、Moritaらの方法
を変えて測定した。すなわち、抽出液を遠心分離
（10,000rpm，10分）後、得られた上清を酢酸緩衝液
（50mMIP5.0）で希釈したものを粗酵素液として、可
溶性澱粉2 gを100mlの0.1M酢酸緩衝液（pH5.0）に
溶解したものを基質とした。基質0.25mlに粗酵素液
0.25mlを加え、37℃で10分間反応させ、生成したマ
ールトースをDNA法で定量した。1分間に1μMのマール
トースを生成する酵素量を1 unitとした。
また、土壌の場所といものの甘さの関係を明らかに
するため、土壌や栽培条件の異なる県内産地からサツマ
イモとその栽培土壌を収集し、い場試験の黒ボク土区、
混層土区も併せて、土壌の可溶性窒素とβ-アミラ
ーゼ活性との関係について調査した。
土壌の種類は、多廃材質黒ボク土、廃棄物質黒ボク土、
淡色黒ボク土、赤ボク土、さらに黒ボク土や赤ボク土を
地返しした場所である。
土壌の可溶性窒素は、25℃で4週間培養後にプレム
ナー法で窒素無機化量を測定した。

結果
1 土壌の種類および施施肥量の違いがいものの内容品質およ
び食味にくぼく影響
(1)サツマイモの生育・収量
各土壌区の施施肥量ごとのつるを図1に示す。2004年
は黒ボク土区の無施肥で242kg/a、標準施肥で269kg/a、
2倍施肥で331kg/a、3倍施肥区で366kg/aであった。
混層土区では、無施肥201kg/aから3倍施肥433kg/aの
範囲にあった。2005年のつる重は2004年に比べ、いずれ
の区も軽く、黒ボク土区で219〜282kg/a、混層土区で72
〜250kg/aで、特に混層土区の無施肥のつる重が軽かった。
2006年は黒ボク土区で175〜313kg/a、混層土区で
36〜210kg/aで、2005年と同程度のつる重であった。
各土壌の施施肥量ごとのつる重を図2に示す。2004
年は、黒ボク土区の無施肥で269kg/a、標準施肥で300
kg/a、2倍施肥で288kg/a、3倍施肥区で291kg/aで
あった。混層土区では、無施肥で256kg/a、標準施肥で
252kg/a、2倍施肥で354kg/a、3倍施肥で344kg/aで
あった。2005年のつる重は、黒ボク土区で236〜257
kg/a、混層土区で183〜290kg/a、2006年は黒ボク土区
で188〜247kg/a、混層土区で102〜264kg/aであった。
表1 施肥量、土壌の種類および試験年ごとのいのいの内容成分

<table>
<thead>
<tr>
<th>年次</th>
<th>土壌の種類</th>
<th>水分</th>
<th>糖分</th>
<th>甘味度</th>
<th>でん粉含量 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>%</td>
<td></td>
<td>Malトース</td>
<td>スクロース</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>N0.0kg</td>
<td>68.3a</td>
<td>1.80</td>
<td>10.0a</td>
<td>13.2a</td>
</tr>
<tr>
<td></td>
<td>N0.4kg</td>
<td>65.9b</td>
<td>1.67</td>
<td>8.3ab</td>
<td>12.1b</td>
</tr>
<tr>
<td></td>
<td>N0.8kg</td>
<td>64.4c</td>
<td>1.29</td>
<td>9.50a</td>
<td>13.1a</td>
</tr>
<tr>
<td></td>
<td>N1.2kg</td>
<td>64.0bc</td>
<td>1.70</td>
<td>9.62ab</td>
<td>12.8ab</td>
</tr>
<tr>
<td>有無差検定</td>
<td></td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>2000</td>
<td>N0.0kg</td>
<td>68.3a</td>
<td>1.80</td>
<td>10.0a</td>
<td>13.2a</td>
</tr>
<tr>
<td></td>
<td>N0.4kg</td>
<td>65.9b</td>
<td>1.67</td>
<td>8.3ab</td>
<td>12.1b</td>
</tr>
<tr>
<td></td>
<td>N0.8kg</td>
<td>64.4c</td>
<td>1.29</td>
<td>9.50a</td>
<td>13.1a</td>
</tr>
<tr>
<td></td>
<td>N1.2kg</td>
<td>64.0bc</td>
<td>1.70</td>
<td>9.62ab</td>
<td>12.8ab</td>
</tr>
<tr>
<td>有無差検定</td>
<td></td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

注1）**、*はそれぞれ1％、5％の危険率で有意差あり
2）異常値を含むにはTukeyの多重検定により5％の危険率で有意差あり
3）表中の各数値は何れもでん粉含量（%）を示すのでもとの分母数
4）甘味度＝（スクロース×1.0）＋（フルクトース×0.69）＋（フルクトース×1.5）＋（マラトース×0.46）
なお、いずれの試験区でも途絶後による収量減（つるばけ）の現象はみられなかった。

(2) サツマイモの内容成分

施肥量、土壌の種類および試験年次ごとのいものの各成分含量を表1に示す。2004年の蒸し物のマルトース含量および全糖含量は、黒ボク土区でそれぞれ10.0%，13.2%，混層土区でそれぞれ7.78%，11.3%であり、黒ボク土区が混層土区に比べ高かった。甘味度は、黒ボク土区で8.47，混層土区で7.66，生いもので 어디糖含量は黒ボク土区で29.8%，混層土区で21.3%であり、甘味度，生いものでで糖含量ともに黒ボク土区が混層土区に比べて高かった。水分は黒ボク土区62.3%，混層土区69.3％と混層土区が黒ボク土区を上回った。2005年および2006年も同様の傾向であった。

施肥量間で比較すると、2004年のマルトース含量は無施肥で7.51%，標準施肥で8.59%，2倍施肥で9.90%，3倍施肥で9.62%であり、無施肥および2倍施肥の間には施肥量が増加するほど高くなる傾向にあった。全糖含量および甘味度も同様であった。また、2005年および2006年も同様の傾向であった。

黒ボク土と混層土の各土壌ごとの施肥量間で比較すると、2005年および2006年の混層土区において、施肥量の増加に伴い、マルトースおよび全糖含量が増加した。しかし、黒ボク土壌においては、施肥量の増加に伴うマルトースおよび全糖含量の増加傾向は明らかでなかった。

(3) 食味官能試験

2005年に実施した蒸し物の食味官能試験について、図3に黒ボク土区での甘さの評価、図4に混層土区における甘さの評価を示す。食味評価の甘さの評価値と総合評価値は同様の傾向であった（データ省略）。黒ボク土区では、施肥量の違いによる甘さに有意差は認められなかった。混層土区の無施肥の甘さは－0.75で、標準施肥区に比較して低く、3倍施肥区の甘さは1.10であった。また、同レベル施肥間で黒ボク土区の食味評価値を対照とした混層土区の食味評価値を図5に示す。無施肥で比較すると、黒ボク土区の食味評価値0に対して、混層土区の甘さは－1.25で低かったが、施肥量が増加すると、黒ボク土区と混層土区の食味評価値の差は小さくなる傾向であった。

(4) サツマイモの窒素含有率

サツマイモのつるおよびいもの中窒素含有率を図6に示す。つるの窒素含有率は黒ボク土区で1.58～1.63%，混層土区で1.16～1.44%であった。いものの窒素含有率は黒ボク土区
で0.35～0.52％，混層土区で0.27～0.38％であった。

表2にサツマイモによる施肥窒素の利利用率を示す。窒素吸収量は，いずれの土壌も施肥量の増加に伴い増加した。無施肥での窒素吸収量は，黒ボコ土区0.58kg/a，混層土区0.17kg/aで，黒ボコ土区が混層土区に比べて高かった。みかけの窒素成分収支からみた窒素利用率は，黒ボコ土区，混層土区とも標準施肥，2倍施肥が高く，3倍施肥では低くなることが認められた。

2 おいしさに及ぼす要因の解析
(1) 窒素施用量と生いものでん粉含量との関係
黒ボコ土区および混層土区における窒素施用量と生いものでん粉含量との関係を3カ年の平均で図7に示す。でん粉含量は，黒ボコ土区を27.0～29.3％，混層土区で17.3～24.3％で，土壌別にみると黒ボコ土区が混層土区を上回った。窒素施用量毎でみると，黒ボコ土区では，施肥量を増加しても，でん粉含量は増加しなかったが，混層土区では，2倍施肥0.8kgまで増加する傾向であった。

(2) でん粉含量とマルトース含量との関係
図8に生いものでん粉含量と蒸しもののマルトース含量の関係を示す。生いものでん粉含量と蒸しもののマルトース含量には正の相関が認められた。

(3) 窒素施用量と生いものβ−アミラーゼ活性との関係
黒ボコ土区および混層土区における窒素施用量と生いものβ−アミラーゼ活性との関係を3カ年の平均で図9に示す。黒ボコ土区のβ−アミラーゼ活性は，1,130～2,190units/ml，混層土区で259～1,290units/mlで，土壌別にみると，黒ボコ土区が混層土区に比べて高かった。また，窒素施用量毎でみると，黒ボコ土区，混層土区いずれの土壌のβ−アミラーゼ活性も，窒素施用量の増加に伴い上昇した。

(4) β−アミラーゼ活性とマルトース含量との関係
生いものβ−アミラーゼ活性と蒸しもののマルトース含量の関係を図10に示す。β−アミラーゼ活性が高ければ蒸しもののマルトース含量が高くなる傾向がみられた。しかし，β−アミラーゼ活性が1,500units/ml以上での，マルトース含量の増加は小さかった。

(5) いもの窒素含有率とβ−アミラーゼ活性との関係
図11にいもの窒素含有率とβ−アミラーゼ活性との関係を示す。いもの窒素含有率とβ−アミラーゼ活性との間には高い正の相関を認めた。

(6) 土壌の可溶性窒素量とβ−アミラーゼ活性との関係
可溶性窒素量とβ−アミラーゼ活性との関係を図12に示す。可溶性窒素量は，黒ボコ土区で23.8～37.9mg/kg，
図9窒素施用量と生いものβ-アミラーゼ活性(3年間)
（図10）同一土壌での結果を図9に示すものとは異なる土壌を用いたもの

図10生いものβ-アミラーゼ活性と蒸らしもののマルトース含量との関係（3年間）

混層土区で6.40〜11.55mg/kgであった。県内のサツマイモ産地の可給態窒素量は、3.88〜46.3mg/kgであった。
土壌の可給態窒素量が高い場所で栽培されたサツマイモのβ-アミラーゼ活性は高い傾向がうかがえた。

考 察

1 土壌の種類および施流量の違いによるいもの内容質および食味に及ぼす影響

サツマイモの収量と施流量の関係をみると、土壌の種類により収量が異なり、特に、混層土区では、施流量0.8kgまで明らかに増加した。黒ボケ土区の上記も収量は、無施肥区と比べてやや低収であったが、標準施肥区、2倍施肥区、3倍施肥区の上記も収量は認められなかった。これに対して、混層土区の上記も収量は、無施肥区から2倍施肥区まで増加したが、3倍施肥区は2倍施肥区と同等であった。

2004年から2006年の間に、混層土区の生育、収量が低下したのは、冬長日が10年以上無作付けで、土作りがなされておらず、サツマイモの3年連作で地力の消耗を考慮したこととも一因と考えられる。

本試験で得られたサツマイモの収量は、2005年と2006年の混層土区の無施肥区以外、本県産米用サツマイモの平均収量以上で、内容成分や甘さの解析に支障はないと考える。

生産面から考えると、黒ボケ土は場の施流量は、これまでの標準施流量である窒素0.4kg/ha程度が適していることが本試験でも確認された。しかし、今回の混層土区場では、2倍施肥の窒素0.8kg/ha程度まで増施しても
良いと判断される。

(2) サツマイモの内容成分

蒸しものマルトース含量および全糖含量、甘味度、生いものでん粉含量は、黒ボク土区が混層土区に比べて高かったが、水分含量に関しては逆の傾向であった。施肥量間で比較すると、マルトース含量は無施肥から2倍施肥まで高くなる傾向にあった。しかし、交互作用が有意なことから、黒ボク土区と混層土区の各土壌区ごとの施肥量間で比較を行った。

その結果、混層土区においては、施肥量の増加に伴い、マルトースおよび全糖含量が増加する傾向にあった。しかし、黒ボク土区においては、無施肥量の増加に伴うマルトースおよび全糖含量の増加は明らかでなかった。

小野らは、淡色黒ボク土壌では、室素を増加すると蒸しものブックス、いも粉の加熱後の全糖濃度および加熱による糖増加量が高まったが、腐植黒ボク土壌では、室素施用量に影響されないと報告しており、これは本報と同様の結果であった。腐植黒ボク土壌と淡色黒ボク土壌の地力差が本報の黒ボク土区と混層土区の地力差に類似していたためと推察される。

(3) 食味官能試験

サツマイモの食味、すなわちおいしさには、甘さと肉質が大きく関与している。そのうち、粉質や粘質などの肉質は人の好みで分かれると思われ、おいしさとしての総合評価には反映されにくく、おいしさは甘さとの関係が高いことが報告されている。

黒ボク土区のサツマイモの甘さは、施肥量の違いによる有意差は認められなかった。混層土区での甘さは、標準施肥区に比較し、無施肥区で劣り、3倍施肥区で優った。黒ボク土区と混層土区の甘さを同一施肥量間で比較した結果、施肥量の増加に伴い、両土壌区の甘さの差が少なくなったことから、甘さの少ない混層土区のサツマイモでも施肥量を増加することで、黒ボク土区並みのサツマイモの甘さに近づくことが示唆された。

この土壌、施肥量ごとの食味評価値は、蒸しものマルトースおよび全糖含量のそれぞれの状況と一致していた。しかし、糖含量にある程度の差がないと食味評価値に反映せず、また、マルトース、糖含量が高いレベルでは、食味評価値に差がでにくいと考えられる。

(4) サツマイモの窒素含有率

サツマイモの窒素含有率と糖含量との関係について

小野らは蒸しものブックス値といも中の窒素含有率との間に正の相関があることを認める。しかし、山川らは12品種・系統のいも中の窒素含有量とマルトース生成量を分析した結果、窒素含有量の多い九州116号のマルトース生成量が最も高かったと報告している。

そこで、土壌別のサツマイモの窒素含有率をみると、いもとともに黒ボク土区が混層土区に比べて高かった。また、施肥量ごとにみると、施肥量の増加により窒素含有率は高くなった。窒素含有率は、いもとともに多施肥により高くなったことに伴い、窒素の養分吸収量も同様の傾向を認めた。

黒ボク土区および混層土区における無施肥の室素吸収量の差は、地力の高低を反映していると考えられる。いもの窒素含有率は施肥量の増加に伴い高くなり、その増加度は混層土区で急、黒ボク土区で高い。食味評価値については、混層土区で多施肥による食味向上効果が認められるが、黒ボク土区では明らかでないことから、地力が高い条件下では施肥による食味向上効果は現れにくいと考えられる。

生産、収量に加え、食味向上の観点から、サツマイモの適正施肥量を考えた場合も、地力の高い場では、施肥室素0.4kg/ a 程度が適し、地力が低い土壌では、窒素0.8kg/ a 程度が望ましいと考えられる。

2. おいしさに及ぼす要因の解析

サツマイモの生いも中には、遊離糖としてフルクトース、グロコース、スクロースが含まれるが、加熱調理によって、β-アミラーゼ酵素がでん粉を分解してマルトースを生成するため、蒸しもや焼きものには4種類の糖が含まれる。フルクトースとグロコース含有量は少量で、食味にそれほど影響はないと考えられ、加熱調理後の甘さはスクロースとマルトース含有量でほとんどが決定される。

下図14は、「高系14号」のスクロースは180日間の貯蔵で、貯蔵開始時より20.2%増加したが、マルトースは減少傾向がみられると報告している。

これらのことから、いもの食味と施肥や土壌条件との関係を解析するには、収穫直後のいもが妥当と考え、甘さを決定する主要成分であるスクロースとマルトースのうち、加熱調理で増加するマルトースについて検討した。

すなわち、甘さを向上させるためには、蒸しものマルトース含量を増加させる必要がある。マルトース含量を増加させるためには、マルトースの素となるでん粉を増やすことと、マルトースを生成するβ-アミラーゼ活性
を高めることができれば良いことになる。
(1) 塩素施用量と生いものでん粉含量との関係
黒ボク土区と混層土区において、施肥量の増加に対する
生いものでん粉含量の変化が異なったのは、施肥量の
増加により黒ボク土区に比べて混層土区のサツマイモの
生育が良くなり、でん粉が蓄積されたことによると考え
られる。
(2) 生いものでん粉含量とマルトース含量との関係
生いものでん粉含量が増加すると蒸しものマルトース
含量が増加した。図8において、黒ボク土区は上位座
標にプロットされているが、混層土区のなかでも黒ボク
土群と同レベルにプロットされたものは、施肥量の増加
によりでん粉含量が増加したものである。このことから、
特に混層土区では、施肥量の増加によって、いものでん
粉含量が増加し、マルトース含量が高くなっている。
(3) 塩素施用量と生いものβ-アミラーゼ活性との関係
β-アミラーゼ活性は、黒ボク土区と混層土区より高かった。また、塩素施用量に関して黒ボク土区、混
層土区いずれの土壌でも、β-アミラーゼ活性は塩素施
用量の増加に伴い、3倍施肥まで上昇した。大倉ら11は
塩素増施区で栽培したいものβ-アミラーゼ活性は標準
区に対して高かったと報告しており、本試験でも同様の
結果を得た。
(4) β-アミラーゼ活性とマルトース含量との関係
β-アミラーゼ活性が高くなると蒸しものマルトース
含量が高くなるが、β-アミラーゼ活性がある程度以
上になると、マルトース含量への影響は少なくなると考え
られる。
図9に示すように、混層土区では、β-アミラーゼ活
性が1,000～1,500units/mlに達するためには2～3倍
の施肥をする必要がある。その中で、混層土区での施肥量
の増加はβ-アミラーゼ活性を上昇させ、マルトース合
量が増大することにより、甘さが増大し、その結果、食
味を向上させることになる。しかし、黒ボク土区では、
標準施肥でβ-アミラーゼ活性が1,500units/ml付近ま
で達しているため、これ以上の増施により、β-アミラ
ーゼ活性を上昇させても、マルトース含量の増加が少な
く、このことから、食味向上効果が明らかでなかったと
考える。
(5) いもの窒素含有率とβ-アミラーゼ活性との関係
いもの窒素含有率や窒素吸収量が高いことは、いも体
内の蛋白含量が多いことであるから、β-アミラーゼの
活性が高いと推定される。その結果、マルトース含量が増加し、食味評価が高まると考えられる。
いもの外観品質向上には、赤ボヤや砂の客土が有効10
であるが、横ら9は客土成分の少ない土壌の客土がいも
のβ-アミラーゼ活性を低下させ、糖度を低下させる可
能性を指摘している。一方、客土により土壌水分が低下
することにより、いもの水分も低下し、相対的にでん粉
含量が増加し、その結果、糖含量が増加することも考え
られる。これらのことをから、食味を向上させるための客
土にはあたっては、施肥量を増やすなどの管理も必要であ
るといえる。
(6) 土壌の可給態窒素量とβ-アミラーゼ活性との関係
土壌の可給態窒素量が高いとサツマイモのβ-アミラ
ーゼ活性が高くなる傾向にあったこと、塩素施用量だけで
なく、土壌の地力もサツマイモの食味評価に影響している
と示唆されている。小野ら10は、サツマイモの安定収量を
確保し甘味を高めるために、可給態窒素量の違いで施肥
量を決定する必要性を述べている。
適正に管理された地力の高い場では、いものβ-ア
ミラーゼ活性が高く、増肥による食味向上は難しいと考え
られる。食味向上のための増肥は、ほ場の可給態窒素
量など、地力の状況を把握して行う必要があると考える。
サツマイモの食味向上のためには、多施餌が有効であ
ったが、土壌の種類、前作の影響、窒素分の土壌残存
状況などを考慮して施肥量を決定する必要がある。新
規参入で企業などが耕作放棄地に新たにサツマイモを
栽培しているが、このような畑では特に地力が高く、サ
ツマイモの食味低下が懸念されるので、地力を高める(窒
素)施肥管理が有効であると考える。また、安定的に収
量を確保し、おいしいサツマイモを生産するためには、
堆肥投入などの基本的な土づくりが重要であることは無
論である。

謝辞
本研究の遂行に当たり、生産地からの試料提供並びに
調査にご協力をいただいた生産農家および関係機関の担
当職員の皆様、作物体および土壌分析において、ご協力
とご助言をいただいた大熊支場環境研究室職員各位およ
び生産環境部土壌環境研究室職員各位、栽培、調査なら
びに分析に係わり、多くのご助言をいただいた大熊支場
園芸作物研究室職員各位に、心より感謝申し上げます。

引用文献
1 ）福井作薫1990. 還元糖の定量法 第2版 学会出
版センター，東京，23-24
2 ）長谷川浩・八尋 健1957. 高地馬が甘藷の生育に
及ぼす影響，日作紀26:37-39
3 ）大場義明・福井 睦・芝山秀次郎・有馬 進・光富
Analysis of Factors and Improvement of Taste of Sweet Potato Benisatsuma

Takashi Kume, Ken-ichiro Ikeda, Tetsuji Matsuzaki and Shinya Kashiwagi

Summary

In recent years, the consumer expects tasty of sweet-potato as well as quality of appearance. Therefore, we analyzed factors related in sweetness of sweet potato by analysis components of these and the influence of fertilizer application. From these reasons, we considered sweetness is one of the most important factors that determine palatability of sweet potato.

Results obtained were summarized as follows:

- β-amylase activity of fresh roots was heightened by increase of fertilizer application, and maltose contents in steamed roots were increased, as a result, taste of sweet potato was improved. In addition, maltose contents in steamed roots was increased as increase of starch contents in fresh roots.

It was different on β-amylase activity by cultivation conditions such as the variety of the soil under the condition of the same fertilizer applied level. In the field with the high productivity, the effect of increase of fertilizer application for improvement of taste was not clear. However, in the field with the low productivity, the starch contents was increased by the 2 times compared with standard rate of fertilizer application, β-amylase activity was heightened, and taste of sweet potato was improved.

Keywords: β-amylase activity, Fertilizer application, Maltose, Starch contents, Sweetness