クワカミキリApriona rugicollis CHEVROLATの食害生態と防除について

<table>
<thead>
<tr>
<th>誌名</th>
<th>蠶絲試驗場彙報</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSN</td>
<td>03853594</td>
</tr>
<tr>
<td>著者</td>
<td>村上, 美佐男</td>
</tr>
<tr>
<td>巻/号</td>
<td>77号</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 25-39</td>
</tr>
<tr>
<td>発行年月</td>
<td>1960年12月</td>
</tr>
</tbody>
</table>
クラウカミキリ Apriona rugicollis CHEVROLAT の食害生態と防除について

村 上 美 佐 男

目 次

まえがき

I 供試材料ならびに幼虫の飼育
II 食害生態
1. 成虫の食害
2. 幼虫の食害
III 根葉収穫における生存率
IV 薬剤注入試験
V 摘 要
VI 参考文献

まえがき

クラウカミキリの駆除についてはすでに数篇の報告があるが、食害生態を調査したものは少なく、横山（1929）の記載も簡略である。筆者は1955年から幼虫を飼育し、1世代における食害生態を調査し、ほぼその実態を知ることができたのでここに報告する。本試験の指導と本文の校閲をいただいた蚕糸試験場病理解剖部長桑名寿一博士、石井氏、助言を与えられた宮崎大学農学部教授中島茂博士に対し、また調査に協力をわたった治郎丸洋三、三尾智秋両技官に感謝申し上げる。

I. 供試材料ならびに幼虫の飼育

材料は蚕糸試験場明石支場および九州支場の桑園から採取した。幼虫の飼育に使用した枝条は材質がやわらかく、裂けやすい一の瀬、福島大葉を40〜50cmに切断し、孵化後1ヶ月内外のものは1年生枝条を、成長するにつれて、2、3年枝条を、4年目の幼虫には直径4cm内外のとくに太い枝を用いた。幼虫を入れる人工トンネルは、鋸で幼虫の体に応じた、いくぶん深目の溝をやや鎖めに作って入れ、その上を枝条の剥皮切片でおおい、毛糸でゆるく縫った。孵化当時の幼虫は第1図に示すように樹皮の一部を割り、木部をわずかに揺り取って幼虫を入れ、樹皮をかぶせ毛糸で縫った。

飼育枝は水を入れた硝子ボットにさし、絶えず水を補給した。野外では図版1に示す3mm方眼の金網で作った縄2m、横1mの飼育室に、1956年7月下旬雌雄成虫各2頭を入
一の幼虫は、1958年6月から始まっており、2年生の桑に移した。第2、3回の飼育試験の幼虫は飼育枝を九州支場に移し飼育を継続した。

II. 食害生態

1. 成虫の食害

1）成虫の食害時期　桑園での成虫の発見は明石付近で6月下旬〜7月上旬（1954年7月7日、1956年6月26日）であるが、熊本地方は1959年5月に雄成虫をみた。発見は明石で9月中旬（1954年9月3日、1955年9月10日）で、熊本は8月20日であった。

この詳細を1959年九州支場の桑園で調査したところ（毎日午前、午後の2回は場巡査）（第1表）で、最も出現在時期は6月下旬〜7月上旬で、発見当時は稚が多く、幼苗は多かった。

以上の結果から成虫が枝条を食害する期間は大体70日内外である。

第1表　桑園における成虫の出現時期

<table>
<thead>
<tr>
<th></th>
<th>6月</th>
<th>7月</th>
<th>8月</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>上</td>
<td>中</td>
<td>下</td>
<td>上</td>
</tr>
<tr>
<td>雌</td>
<td>0</td>
<td>3</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>雄</td>
<td>2</td>
<td>8</td>
<td>50</td>
<td>46</td>
</tr>
<tr>
<td>計</td>
<td>2</td>
<td>11</td>
<td>78</td>
<td>70</td>
</tr>
</tbody>
</table>

2）枝条の喰食　出現成虫はただちに1年枝の樹皮を、頭部をもって上方に向かって喰食する。この部位は枝の中央部からやや上方で、これに近い緑色部や下部の灰かつつ色の木化部分はきわめて少ない。喰食の先はだいもものはその上部が枯れ、あるいは折損することが多く、また、葉は黄変し、硬変する。

なおトラフカタキリは雨や雨水を飲んで生命を維持するがこの虫は水を飲むことなく、もっぱら樹皮を喰食して生存する。

3）産卵　産卵は、喰食による損傷よりもむしろに折れやすさ、その被害は大きい。交尾後雌成虫は枝条にさかさにとまり（図版4）大頭で木質部に達する裂傷をつけ、皮層部を起こし口頭部を深く差し込み孔をあける。反転して産卵管を差し込み1粒産卵する。産卵後粘液物を出しながら尾部で樹皮面を押さえる。この操作に40分間内外を要する。
クワカミキリの食害生態と防除について

第2表　1日の産卵数と産卵期間

<table>
<thead>
<tr>
<th>個体別No.</th>
<th>日数</th>
<th>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3 2 4 2 1 3 3 2 5 2 4 2 4 4 2 4 2 1 1 2 3 3 2 2 2 5 3 2 1 1 0 7 5 3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3 2 1 3 2 2 2 3 1 5 1 3 2 2 3 2 4 2 3 1 5 4 2 2 3 2 2 2 3 1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 0 2 0 1 2 4 4 4 2 2 1 4 3 2 4 3 5 3 1 4 5 1 1 2 0 5 2 3 2 2 4 1 3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5 3 1 2 4 3 1 2 3 2 2 1 4 7 2 2 1 5 5 2 4 2 5 2 5 4 1 1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 1 1 1 1 0 3 2 0 1 1 0 0 3 4 0 0 0 1 0 1 1 0 0 1 0 2 1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 0 2 3 5 3 4 3 3 1 5 2 3 1 4 3 0 1 2 3 2 3 5 2 3 0 3</td>
<td></td>
</tr>
</tbody>
</table>

第3表　産卵数（1958～1959年調査）

<table>
<thead>
<tr>
<th>区別</th>
<th>1 2 3 4 5 6 7 8 9 10 11 12 13 14 合計 1頭平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>供試頭数</td>
<td>26 161 72 89 70 138 65 82 61 69 117 84 162 65 1,261 60.0</td>
</tr>
<tr>
<td>産卵数</td>
<td>1 2 2 1 1 1 1 2 2 2 2 1 1 2 1 21</td>
</tr>
</tbody>
</table>

4）産卵数　1959年九州支場楽園で出現直後の成虫を採取し、産卵数を調査した（図版2）。体内にある卵を見ると完成卵は8〜18粒であるが、最多産卵数は61日間に138粒、21個体の平均で64.0。体内残卵数3〜18、16個体の平均が7.3粒であった。1日の最多産卵は7粒、平均2.2粒であり、産卵期間の平均（6個体）は39.0日を示した（第2表）。産卵は午後、とくに夕方が多かった。成虫は出現後3日内外で産卵をはじめ、産卵後1〜5日を経て死亡した。

5）産卵部位　（根削仕立の場合）成虫は産卵しはじめると、第4表にみるように付近の株の枝条に次々と産下する傾向がある。産卵部位について1954〜1955年に1000株について調査したところ（第5表）、1年枝の基部から15cm内外までの高さがきわめて多く、
全体の75%内外を占め、高くなるにつれて少なくなる結果を得た。
産卵枝条の直径は、1.3〜1.9cm、とくに1.7cm内外が最も多い（第6表）。産卵枝条の
太さは、枝条の高低に関係なくほぼ同じ径の枝条内に産んでいる（第2図）。

テーブル2 産卵株の分布

株	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1																								
2																								
3																								
4																								
5																								
6																								

市平、根刈、雑間1.5m、株間0.75m、容獲3枝伐採

極端な場合、高さ3mの立通桑の2年枝に産卵したが、この径は1.3〜1.9cmであった。
1枝条の産卵場所数は1ヶ所ものがほとんどで、976本中2ヶ所のものが46本（5
%）3〜4ヶ所のもの10本（1%）であった。

6）桑の品種ならびに用途別桑園と産卵率　樹皮の粗硬な品種は硬滑なものよりも産
卵率が高いという説がある。筆者の調査では（第7表、1954年）粗密な市平、福島大葉
が一の潮、鯖桑に比べやや多い程度であった。採果時期については、同一場内の春切、
夏切桑園で比較したところ（1954年）明らかに枝条の太い春切桑園が多かった（第8表）。

2. 幼虫の食害

1）食害期間（経過） IIIの項で述べた飼育方法により、1955年8月2日孵化した17
グラフとテーブルを挿入する

第6表
産卵部分の条幅(cm)

<table>
<thead>
<tr>
<th>部位</th>
<th>0.80～0.90</th>
<th>0.90～1.00</th>
<th>1.01～1.10</th>
<th>1.11～1.20</th>
<th>1.21～1.30</th>
<th>1.31～1.40</th>
<th>1.41～1.50</th>
<th>1.51～1.60</th>
<th>1.61～1.70</th>
<th>1.71～1.80</th>
<th>1.81～1.90</th>
<th>1.90～2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>本数</td>
<td>1</td>
<td>6</td>
<td>19</td>
<td>37</td>
<td>46</td>
<td>92</td>
<td>117</td>
<td>128</td>
<td>135</td>
<td>137</td>
<td>102</td>
<td>60</td>
</tr>
</tbody>
</table>

備考: 1) 調査は1954年8月28日～1955年5月30日に実施。

2) 産卵部位を変形しているため、それより下方3cm付近を測定した。

第7表
桑の品種と産卵率（夏切枝条：1954年）

<table>
<thead>
<tr>
<th>品種</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>市平</td>
<td>14</td>
<td>15</td>
<td>11</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>福島大業</td>
<td>11</td>
<td>6</td>
<td>8</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>一の瀬田</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>魯桑</td>
<td>13</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

備考: 供試本数1ブロック100本計400本。
<table>
<thead>
<tr>
<th>ブロック</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>平均</th>
<th>指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>春切桑園</td>
<td>35%</td>
<td>12%</td>
<td>23%</td>
<td>36%</td>
<td>21%</td>
<td>25%</td>
<td>100</td>
</tr>
<tr>
<td>夏切桑園</td>
<td>8%</td>
<td>9%</td>
<td>15%</td>
<td>5%</td>
<td>9%</td>
<td>9%</td>
<td>36</td>
</tr>
</tbody>
</table>

備考：1）供試品種 一の他、
2）供試本数1ブロック100本 計500本。
3）調査 1954年8月10日。

<table>
<thead>
<tr>
<th>項目</th>
<th>供試枝数</th>
<th>産卵枝数</th>
<th>産卵率</th>
<th>指数</th>
<th>最長枝8月2日の根径</th>
</tr>
</thead>
<tbody>
<tr>
<td>春切桑園</td>
<td>1,560</td>
<td>50</td>
<td>3.2%</td>
<td>100</td>
<td>1.5 cm</td>
</tr>
<tr>
<td>夏切桑園</td>
<td>9,000</td>
<td>82</td>
<td>0.9%</td>
<td>28</td>
<td>1.1 cm</td>
</tr>
</tbody>
</table>

備考：以上の他、1954年8月30日調査。
頭を室内で飼育した。うち13頭は死亡、残り4頭は第3年目に羽化をみた。1956年には7月下旬〜8月中旬に孵化した幼虫28頭を飼育し、生存幼虫8頭のうち4頭を第2年目、残り4頭を第3年目に羽化させた。さらに1957年には8月上旬孵化幼虫17頭を飼育し、生存

第9表 羽化期

(1) 3年に1回発生するもの

<table>
<thead>
<tr>
<th>項目</th>
<th>個体No.</th>
<th>老熟</th>
<th>騏化</th>
<th>羽化</th>
<th>出現</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5.28</td>
<td>6.28</td>
<td>7.8</td>
<td>7.18</td>
<td>1958年</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5.28</td>
<td>6.13</td>
<td>6.28</td>
<td>7.8</td>
<td></td>
</tr>
</tbody>
</table>

(2) 2年に1回発生するもの

<table>
<thead>
<tr>
<th>項目</th>
<th>個体No.</th>
<th>老熟</th>
<th>騏化</th>
<th>羽化</th>
<th>出現</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td></td>
<td>—</td>
<td>6.15</td>
<td>6.26</td>
<td>7.8</td>
<td>1958年</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>—</td>
<td>6.15</td>
<td>7.7</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>—</td>
<td>7.5</td>
<td>7.11</td>
<td>7.21</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>—</td>
<td>5.30</td>
<td>6.10</td>
<td>—</td>
<td>1959年</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>—</td>
<td>6.10</td>
<td>6.21</td>
<td>6.26</td>
<td></td>
</tr>
</tbody>
</table>
3頭のうち2頭が第3年目に羽化し、1頭は越冬中であった。なお、第3年目羽化成虫は体が小さかった。

3年1回発生と、2年1回発生とが見られた。すなわち幼虫の発生期間は2年および3年である（第10表）。

蛹化時期は、5月下旬～7月上旬にあたり蛹期間は12日内外を要する。

幼虫の発育程度を室内飼育で観察すると、1年目の最長時は孵化当時の約2.9倍、2年目は6.3倍、3年目は7.1倍（図版5）に達する。ただし2年に1回発生するものは2年目に急速な発育ぶりを示し、約6.9倍に達した（第11表）。

![第10表：経過式 3年に1回発生するもの](image)

<table>
<thead>
<tr>
<th>年次</th>
<th>1月</th>
<th>2月</th>
<th>3月</th>
<th>4月</th>
<th>5月</th>
<th>6月</th>
<th>7月</th>
<th>8月</th>
<th>9月</th>
<th>10月</th>
<th>11月</th>
<th>12月</th>
</tr>
</thead>
<tbody>
<tr>
<td>1年目</td>
<td>+</td>
</tr>
<tr>
<td>2年目</td>
<td></td>
</tr>
<tr>
<td>3年目</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![第11表：経過式 2年に1回発生するもの](image)

<table>
<thead>
<tr>
<th>年次</th>
<th>1月</th>
<th>2月</th>
<th>3月</th>
<th>4月</th>
<th>5月</th>
<th>6月</th>
<th>7月</th>
<th>8月</th>
<th>9月</th>
<th>10月</th>
<th>11月</th>
<th>12月</th>
</tr>
</thead>
<tbody>
<tr>
<td>1年目</td>
<td>+</td>
</tr>
<tr>
<td>2年目</td>
<td></td>
</tr>
<tr>
<td>3年目</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備考：十成虫。●卵。－幼虫。○蛹

2）孵化　卵期間は9〜14日を要し、10日が最も多かった（第12表）。この孵化率は83%を示した。

3）食害傾向　孵化幼虫はしばらく静止した後食害しはじめる。概して直線的に下降する（第16、17表）。食害部分はおもに材質部であり、10月から翌年の4月頃までは地下部分（図版6）。6月〜8月までは浅く形成層を中心に食進するものが少なく（第13表）。1年枝のなかなり高い部分まで上昇することがある。なお、興味あることは1年目の幼虫で枝に侵入したものの大部分は不卵卵の低いもので（第14表）、かつ、膿の部分を食進下降するものが最も早く（8月上旬）株に侵入している。幼虫はトンネルのところどころに外孔をうがち、食屑および膿の大部分（95%）を排出、トンネルの中は空洞である。膿が詰まってているトラフカミュと比べ、対照的である（図版7）。食屑と膿の割合は75%対43%であった。膿は軽の進むにつれて大形になり第3年目のものは長形1.5mm内外である（第3図）。排膿孔の大きさも、第1年目直径1.5mm内外、第3年目3.0mm内外に達する。その孔の
第11表 幼虫の発育（室内）（体長cm）

(1) 3年に1回発生したもの

<table>
<thead>
<tr>
<th>個体No.</th>
<th>経過</th>
<th>苦化後</th>
<th>1年目</th>
<th>2年目</th>
<th>3年目</th>
<th>老熟期</th>
<th>摘要</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>0.85</td>
<td>1.6</td>
<td>5.2</td>
<td>5.2</td>
<td>4.2</td>
<td>第1回飼育</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.89</td>
<td>2.3</td>
<td>5.0</td>
<td>5.8</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.94</td>
<td>2.5</td>
<td>4.5</td>
<td>6.3</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>0.85</td>
<td>1.8</td>
<td>5.0</td>
<td>6.0</td>
<td>4.2</td>
<td>第2回飼育</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>0.91</td>
<td>2.5</td>
<td>5.1</td>
<td>6.0</td>
<td>欠</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>0.79</td>
<td>2.6</td>
<td>6.5</td>
<td>7.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>0.75</td>
<td>3.0</td>
<td>5.5</td>
<td>6.0</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.98</td>
<td>3.0</td>
<td>6.3</td>
<td>6.8</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.80</td>
<td>3.2</td>
<td>5.5</td>
<td>5.8</td>
<td>欠</td>
<td></td>
</tr>
<tr>
<td></td>
<td>平均</td>
<td>0.86</td>
<td>2.5</td>
<td>5.4</td>
<td>6.1</td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>

(2) 2年に1回発生したもの

<table>
<thead>
<tr>
<th>個体No.</th>
<th>経過</th>
<th>苦化後</th>
<th>1年目</th>
<th>2年目</th>
<th>老熟期</th>
<th>摘要</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>0.85</td>
<td>1.0</td>
<td>5.5</td>
<td>3.2</td>
<td>第2回飼育</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>0.85</td>
<td>1.7</td>
<td>6.6</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>0.82</td>
<td>2.2</td>
<td>5.5</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0.90</td>
<td>2.5</td>
<td>6.3</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>平均</td>
<td>0.85</td>
<td>1.8</td>
<td>5.9</td>
<td>3.6</td>
<td></td>
</tr>
</tbody>
</table>

備考. 各月に調査したもののも、最長時の体長を示す。

第12表 雉 期 間 （室内：28°C内外シャーレー内）

<table>
<thead>
<tr>
<th>日数</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>供試卵数</th>
</tr>
</thead>
<tbody>
<tr>
<td>雉数</td>
<td>14</td>
<td>34</td>
<td>17</td>
<td>16</td>
<td>11</td>
<td>3</td>
<td>95</td>
</tr>
</tbody>
</table>

備考. 調査は1955～1957年の3ヵ年で、7月上旬～8月上旬に産卵したもの。

表面は小さいが、内部はかなり広い。排尿孔間の距離は最長24cm、最短8cm、平均15cm内外を示した（第15表）。

備考. 調査は1955～1957年の3ヵ年で、7月上旬～8月上旬に産卵したもの。

表面は小さいが、内部はかなり広い。排尿孔間の距離は最長24cm、最短8cm、平均15cm内外を示した（第15表）。
第3図 幼虫の蓑の大きさ
a. 稲化後2日目 b. 2年目のもの c. 3年目のもの

第13表 幼虫の食害時期と食害部分（供試幼虫2～3年目）

<table>
<thead>
<tr>
<th>食害期間</th>
<th>材質部</th>
<th>形成層付近</th>
<th>供試頭数</th>
</tr>
</thead>
<tbody>
<tr>
<td>月日</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.7～1.8</td>
<td>頭</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>1.8～5.19</td>
<td>20（87）</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>5.19～6.18</td>
<td>10（50）</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>6.18～7.15</td>
<td>6（32）</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>7.15～8.24</td>
<td>7（39）</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>8.24～10.3</td>
<td>11（65）</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>10.3～11.6</td>
<td>14（100）</td>
<td>0</td>
<td>14</td>
</tr>
</tbody>
</table>

()内は割合を示す。

第14表 幼虫が株に侵入した産卵部位（cm）

<table>
<thead>
<tr>
<th>産卵部位</th>
<th>1 ～ 5</th>
<th>6 ～ 10</th>
<th>11 ～ 15</th>
<th>16 ～ 20</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>個体数</td>
<td>45</td>
<td>11</td>
<td>5</td>
<td>1</td>
<td>62</td>
</tr>
<tr>
<td>割合（％）</td>
<td>72.6</td>
<td>17.7</td>
<td>8.1</td>
<td>1.6</td>
<td>100</td>
</tr>
</tbody>
</table>

第15表 幼虫の蓑殻孔間の距離

<table>
<thead>
<tr>
<th></th>
<th>平均</th>
<th>最長</th>
<th>最短</th>
</tr>
</thead>
<tbody>
<tr>
<td>1年度</td>
<td>12.7</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>2年度</td>
<td>15.5</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>3年度</td>
<td>15.8</td>
<td>20</td>
<td>12</td>
</tr>
</tbody>
</table>

20個体の平均を示す。
第16表 幼虫の食進方向（産卵部を中心として）1955年：桑園

<table>
<thead>
<tr>
<th>項目</th>
<th>上にあがる</th>
<th>下にさがる</th>
<th>その他</th>
<th>調査数</th>
</tr>
</thead>
<tbody>
<tr>
<td>幼虫数</td>
<td>15</td>
<td>184</td>
<td>0</td>
<td>199</td>
</tr>
<tr>
<td>割合(%)</td>
<td>8</td>
<td>92</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

第17表 幼虫の食進方向 1956年：実験室内

<table>
<thead>
<tr>
<th>区別(位置)</th>
<th>適用するもの</th>
<th>下降するもの</th>
<th>その他</th>
<th>第1回調査(1956.8.20)</th>
<th>第2回調査(1956.9.7)</th>
<th>供試頭数 (供試枝条)</th>
</tr>
</thead>
<tbody>
<tr>
<td>普通区</td>
<td>4 (20)</td>
<td>15 (75)</td>
<td>1 (5)</td>
<td>6 (30)</td>
<td>14 (70)</td>
<td>0</td>
</tr>
<tr>
<td>逆立区</td>
<td>6 (30)</td>
<td>13 (65)</td>
<td>1 (5)</td>
<td>3 (15)</td>
<td>17 (85)</td>
<td>0</td>
</tr>
<tr>
<td>水平区</td>
<td>11 (55)</td>
<td>9 (45)</td>
<td>0</td>
<td>12 (60)</td>
<td>7 (35)</td>
<td>0</td>
</tr>
</tbody>
</table>

備考．水平区の上は専端，下降は基部に当る．

4）食害の時期とその多寡 冬期間野外では排泄をみないし，幼虫を例示してみてもほとんど食害しない，そこで1959年8月28日から約1ヵ月，体長1.5cm内外の1年目の幼虫15頭について食害の最低温度を調べたところ，9℃付近であった．

桑園における排卵の最終時期は（1959年，幼虫10頭につき5日おきに調査）早いものは11月20日，大半は11月30日で，12月5日には全部が排卵を終った．平均気温は12月2日と3日の13℃内外を除けば9℃内外であった．

食害は（第18表）6～11月，とくに7，8月は最も多く，12～3月は少ない，また幼虫が成長するにともない多くなっている．1日の平均食害量は1年目が約6mm，2年目は13mm，3年目が16mmとなっている（第4図）．

第18表 幼虫の食害度（トンネルの長さ：cm）

<table>
<thead>
<tr>
<th>個体No.</th>
<th>1年目（1955年）</th>
<th>2年目（1956年）</th>
<th>3年目（1957年）</th>
</tr>
</thead>
<tbody>
<tr>
<td>検査月日</td>
<td>9.6 10.6 11.7 12.9</td>
<td>1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.4 9.21 10.27 11.30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13 9 10 0 0 0 0 7 2 21 36 39 48 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11 22 27 0 0 0 0 4 8 28 35 30 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>18 19 8 0 0 0 0 1 14 9 21 40 37 35 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>14.0 16.7 15.0 0 0 0 0.3 7.0 5.0 16.7 34.7 37.0 37.7 21.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
その2

<table>
<thead>
<tr>
<th>個体No.</th>
<th>1年目 (1956年)</th>
<th>2年目 (1957年)</th>
<th>3年目 (1958年)</th>
<th>4年目 (1959年)</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>24</td>
<td>21</td>
<td>0</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>42</td>
<td>15</td>
<td>1</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>28</td>
<td>30</td>
<td>45</td>
<td>0</td>
<td>26</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>125</td>
<td>24</td>
<td>40</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>30</td>
<td>26</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>32</td>
<td>6</td>
<td>9</td>
<td>25</td>
</tr>
</tbody>
</table>

その3

<table>
<thead>
<tr>
<th>個体No.</th>
<th>1年目 (1956年)</th>
<th>2年目 (1957年)</th>
<th>3年目 (1958年)</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>26</td>
<td>21</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>15</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>25</td>
<td>23</td>
<td>2</td>
<td>11</td>
</tr>
</tbody>
</table>

孵化後老熟までに、3年1回発生では約4m、2年1回発生では2mのトンネルをうがい食害することになる。

Ⅲ. 根刈桑園における生存率

1954年11月中旬から翌春5月下旬にわたる明石支場での調査によると（第19表）、卵期間
第4図 クワカミキリ幼虫の1日平均食害度（トンネルの長さ）

第19表 交代後2年目5月頃までの幼虫の生存率 （明石支場教授）

<table>
<thead>
<tr>
<th>調査月日</th>
<th>項目</th>
<th>供試数</th>
<th>死卵数</th>
<th>枝条の中の死亡幼虫数</th>
<th>生存幼虫のうち枝条内の株侵入数</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1954. 11. 10～12. 29</td>
<td></td>
<td>101</td>
<td>69</td>
<td>12</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>" 12. 18～12. 21</td>
<td></td>
<td>110</td>
<td>44</td>
<td>12</td>
<td>43</td>
<td>11</td>
</tr>
<tr>
<td>1955. 1. 29～2. 2</td>
<td></td>
<td>111</td>
<td>54</td>
<td>10</td>
<td>41</td>
<td>6</td>
</tr>
<tr>
<td>" 2. 28</td>
<td></td>
<td>160</td>
<td>103</td>
<td>23</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>" 3. 22～3. 30</td>
<td></td>
<td>86</td>
<td>35</td>
<td>20</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>" 4. 18</td>
<td></td>
<td>123</td>
<td>92</td>
<td>27</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>" 5. 18～5. 30</td>
<td></td>
<td>146</td>
<td>85</td>
<td>19</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>計</td>
<td></td>
<td>837</td>
<td>482</td>
<td>123</td>
<td>180</td>
<td>52</td>
</tr>
<tr>
<td>割合（％）</td>
<td></td>
<td>100</td>
<td>57.6</td>
<td>14.7</td>
<td>21.5</td>
<td>6.2</td>
</tr>
</tbody>
</table>

57.6％が死ぬ。枝条の中の死亡幼虫は14.7％、さらに生存幼虫の21.5％が枝条枝条の中で死ぬ。それで株に侵入するものは、6.2％となる。羽化するまでを室内飼育でみると、68頭のうち死亡したものが21頭であったから（70％），卵から羽化までの生存率は4％になる。1年枝を検討した結果，被害株が多くなるから（第20表），中列以上に高い生存率を示すものであろう。
第20表 グリーンと株上げしたもの被害株割合（1959年12月調査）

<table>
<thead>
<tr>
<th>区別</th>
<th>供試株数</th>
<th>被害株数</th>
<th>被害株割合</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照株苗区</td>
<td>346株</td>
<td>22株</td>
<td>6.4%</td>
<td>桑宮隠、改良赤芽桑株</td>
</tr>
<tr>
<td>株上げ区</td>
<td>343株</td>
<td>48株</td>
<td>14.0%</td>
<td>株上げ1959年6月</td>
</tr>
</tbody>
</table>

IV. 薬剂注入試験

幼虫の駆除については5), 6), 最近平井・西谷3), 伝1), 石井4)の諸氏がBHC、DDT、ホリドール、テプレンの効果について報告している。

筆者は1956年、シストロン（15）の100、200、400倍液を直接虫体に散布し、殺虫効果を認めたので、注入試験を行なった。供試材料は体長2〜3cmの1年目の幼虫5頭（枝条20本）で、トンネルの長さが15cm内外になった頃に、排気孔からシストロン200倍液を注射器で注入し、95%の殺虫率を得た（第21表）。

1959年10月には1年目の体長1.5cm内外の幼虫各5頭（枝条5本）を供試し、DDT、BHCの50倍液を注入したところ100%の殺虫率をみた（第22表）。そこで同年11月に6〜8年目的根剣桑で排気中のものについてシストロン、DDT、BHCを用いて併せて試験を行なった。供試頭数（株数）は15〜20頭、うち10頭について抜株および底部を切開して生存を調査した。結果は、DDTの100倍液を除き、100%の殺虫率をみた（第23表）。死亡幼虫の位置は濃度の高いもののほどトンネルの下部に多く見られた。注入量はトンネルの大きさでもが

第21表 薬剤注入試験（室内）

<table>
<thead>
<tr>
<th>区別</th>
<th>供試頭数</th>
<th>死虫数</th>
<th>殺虫率</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照無処理区</td>
<td>20</td>
<td>0</td>
<td>0%</td>
<td>注入日1956年9月25日、調査日1956年10月8日</td>
</tr>
<tr>
<td>水注入区</td>
<td>20</td>
<td>1</td>
<td>5%</td>
<td>シストロン（15）ガムマー剂BHC15%</td>
</tr>
<tr>
<td>シストロン（15）200倍区</td>
<td>20</td>
<td>19</td>
<td>95%</td>
<td></td>
</tr>
</tbody>
</table>

第22表 薬剤注入試験（室内）

<table>
<thead>
<tr>
<th>区別</th>
<th>供試頭数</th>
<th>死虫数</th>
<th>殺虫率</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照無処理区</td>
<td>5</td>
<td>0</td>
<td>0%</td>
<td>注入日1959年10月31日、調査日1959年11月25日</td>
</tr>
<tr>
<td>DDT 50倍区</td>
<td>5</td>
<td>5</td>
<td>100%</td>
<td>注入後25℃室に5日間おいてから調査</td>
</tr>
<tr>
<td>BHC 50倍区</td>
<td>5</td>
<td>5</td>
<td>100%</td>
<td>DDT DDT20% BHC ガムマー剤10%</td>
</tr>
</tbody>
</table>
38 薬 系 試 験 場 業 締 第 77 号

うが、3〜6cc でよい（第 21 表）。器具は注射器、ビニール製容器（図版 8，9）でよい。
薬剤注入法のほかに夏切桑園は 1 アールにつき 5〜10 株の春切株をつくり成虫を誘致捕殺することと、株直し後の幼虫の駆除などが本貯の実用的な防除法である。
なお本虫の被害の多いところは根切仕立てにして夏切の時期を早くし、産卵期に枝条が太くなるようにし、産卵部位を高め、株に侵入するのを予防することができる。

第 23 表 薬 剤 注 入 効 果 試 験

<table>
<thead>
<tr>
<th>区 别</th>
<th>供 試 株 数</th>
<th>死 虫 数</th>
<th>殺 虫 率</th>
<th>摘 要</th>
</tr>
</thead>
<tbody>
<tr>
<td>シストロン（15）100倍区</td>
<td>10</td>
<td>10</td>
<td>100 %</td>
<td>黒かつ色またはかつ色のものが多い。</td>
</tr>
<tr>
<td>シストロン（15）200倍区</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>DDT 50 倍 区</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>体色わずかに変色する程度。</td>
</tr>
<tr>
<td>DDT 100 倍 区</td>
<td>10</td>
<td>8</td>
<td>80</td>
<td>生存のうち 1 頭は体積著しく縮小。</td>
</tr>
<tr>
<td>BHC 50 倍 区</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>黒かつ色またはかつ色のもの 2 頭。</td>
</tr>
<tr>
<td>BHC 100 倍 区</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

備考
1) 注 入 量 トンネルからあふれる程度。
2) 注入月日 1969年11月14, 17, 19, 24, 30日に注入。
3) 調 査 1960年2月4, 22, 24日。
4) 幼虫の体長 3.5〜7.8cm（2〜3年目）

第 24 表 薬 剤 の 注 入 所 要 量 (cc)

<table>
<thead>
<tr>
<th>所要量</th>
<th>1〜 2</th>
<th>3〜 4</th>
<th>5〜 6</th>
<th>7〜 8</th>
<th>9〜10</th>
<th>11〜12</th>
<th>13〜14</th>
<th>15〜16</th>
<th>17〜18</th>
<th>19〜</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>トンネルの数</td>
<td>2</td>
<td>30</td>
<td>31</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>11</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>113</td>
</tr>
</tbody>
</table>

V. 摘 要

クワカミキリを飼育し、卵から成虫に至る生態を調査し、あわせて駆除と予防について試験した。

1) 成虫の食害 野外における成虫の出現は地域、年により多少の差はあるが、大体6〜9 月中旬にわたる。枝条食害期間は約 70 日で、おもに緑色部を喰食して生活する。
産卵は 1 年に際して立つこととなり、枝条をつくり、1 粒ずつ産下する。所要時間は 40 分内外、1 階の産卵数は多いもので 138 粒を 61 日間に産下し、21 個体の平均は 60 粒、1 日の最高は 7 粒、平均 2.2 粒、産卵期間の平均は 39 日、産卵部位は 1 年枝の基部から高さ 15cm 付近、枝条の直径は 1.7cm 外周が最も多く、産卵部位は枝条の太さで決定する。産卵は夏切桑園より春切桑園の後に多く、桑の品種の差異は認められなかった。
2) 幼虫の食害 発生は2年1回と、3年に1回があり、幼虫の食害期間は満2ヶ月および3ヶ月であった。
卵は10日内外で孵化し、幼虫期、壮齢期ともに木質部を直線的に下降食進し、夏期は浅く、冬期は深くかつ下部を侵食する。糞と糞屑はほとんど外部に排出し、トンネルの中は空洞である。食害程度（トンネルの長さ）は夏期7〜8月が最も多く、12〜3月までは少ない。1日の平均食害度は第1年目は6mm、2年目は13mm、3年目は16mmを示し、3年に1回発生するものは約4m、2年に1回発生するものは2mの長さのトンネルをうかがつ。
3) 根葉桑園における生存率 桑園における孵化率は悪く、1年枝の伐採枝条の中で死んでいくもの、幼虫で死亡するものが多いて、2年目の6月頃の生存率は全産下卵数の6.2%にすぎず、一世代をまつなとうするのは4％内外となる。
4) シストロン（15）の100〜200倍、BHC 50〜100倍、DDTの50倍液を排棄孔から注入すれば殺虫効果がある。

参考文献
1) 伝 忠 蔵 1953. 桑天牛幼虫に対する BHC 粉剤の効果. 蚊糞界報. 61（714）：14〜16.
2) 郷 司 演 1937. クワカミキリの産卵位置に関する調査. 蚊糞学会報. 8（1）.
3) 平井重三・西谷好一 1951. 天牛幼虫に対する BHC 及び DDT 粉剤の効果. 蚊糞及調査. 26（6）.
4) 石井 男二 1953. 桑天牛幼虫駆除に関する試験. 蚊糞界報. 62（723）：17〜18、21.
5) 濱田正彦・梅津林平 1940. 無花果鉤曲虫駆除に関する一新法. 蚊糞及び園芸. 15（1）.
6) 村上義佐男 1954. 「くわかみきり」幼虫駆除の適期、特に侵害株の場合. 蚊糞研究. （10）.
7) 村上義佐男 1956. 「くわかみきり」の生態について、特に1年目の経過観察. 日本蚊糞学会関西支部13回講演要旨.
8) 村上義佐男 1956. 「くわかみきり」「とらふかみきり」幼虫の食性と薬剤散布. 日本蚊糞学会関西支部14回講演要旨.
9) 横山 桐郎 1920. 日本薬害害虫全書.

図版説明
1. 野外の銅管飼室.
2. 産卵数調査用の銅育箱.
3. 交尾中の成虫.
4. 産卵場所をつくるときの姿勢.
5. 幼虫 a. 3年目最盛期 b. 孵化直後.
6. 地面から下に入れた幼虫（11月）.
7. 幼虫の食害枝、a. クワカミキリ b. トラフカミキリ.
8. 注射器による薬剤注入.
9. ピニール製容器による薬剤注入.