Lactobacillus paracasei K71投与によるオボアルブミン感作したBALB/cマウスにおけるTh1細胞増加とTh2細胞減少
Induction of Th1 Cells and Reduction of Th2 Cells in Ovalbumin-immunized BALB/c Mice upon Oral Administration of Lactobacillus paracasei K71

Takuya TERADAIRAI, Takashi HARA2, Takehisa KUMAGAI3 Mariko IGUCHI3 and Toshio JOH2
(Received January 30, 2013)

Summary

Lactobacillus paracasei K71 (L. paracasei K71) with stimulatory activity for interleukin-12 (IL-12) production has been isolated from Sakekasu (sake lees), a Japanese traditional fermented food coproduced during sake brewing. Oral administration of L. paracasei K71 significantly reduced serum immunoglobulin IgE level in ovalbumin (OVA)-immunized BALB/c mice with type 2 helper T (Th2) polarization. In the present study, we examined the influence of L. paracasei K71 on Th1/Th2 cells population in spleen, employing OVA-immunized BALB/c mice. Orally administration of L. paracasei K71 resulted in an increase of CD4+ T cells expressing CXCR3 (CD183) and a decrease of CD4+ T cells expressing CCR4 (CD194) in splenocytes, in parallel with a reduction of total and OVA-specific IgE levels in serum. Since Th1 cells and Th2 cells preferentially express CXCR3 and CCR4 respectively, it seems that L. paracasei K71 can potentially induce Th1 cells and reduce Th2 cells in vitro, leading to down-regulation of IgE synthesis. The splenocytes from L. paracasei K71-administrated mice also showed lower IgE production level than those from control mice. These results suggest that L. paracasei K71 might be useful for improving Th2-dependent allergic diseases.

Key words: Lactobacillus paracasei K71, IgE, Th1/Th2, CXCR3(CD183), CCR4(CD194)

Lactobacilli are used widely in industrial and traditional fermentative food processes. Commensal microorganisms including lactobacilli are intensively exploited for probiotics-containing dairy products. Most bacteria belonging to the genus Lactobacillus have a long history of safe use (Salminen et al., 1998). It is expected that lactobacilli inhabiting in a variety of food products potentially contribute to health benefits. Certain Lactobacillus strains can potentially modulate immune response through the production of interleukin-12 (IL-12), a potent stimulus for interferon-γ (IFN-γ) production, by antigen presenting cells, such as dendritic cells (DCs) and macrophages, leading the population of type 1 helper T (Th1) cells and Th2 cells toward Th1-biased state (Murosaki et al., 1998; Shida et al., 1998; Fujitaka et al., 2004). This effect might be of use in prevention and treatment of allergic diseases. Most of allergic diseases, such as atopic dermatitis, pollinosis and seasonal allergic rhinitis, are associated with elevated production of serum immunoglobulin E (IgE). IgE is produced by plasma B cells, which is mainly regulated by Th2 cells via producing IL-4. IL-4 induces IgE switching; augmenting IgE production in B cells and itself promotes Th2 differentiation. It is realized that Th2-biased state participates in clinical condition of allergic diseases (Robinson et al., 1996; Platts-Mill, 2001). On the contrary, Th1 cells produce IFN-γ that plays the opposite role to IL-4, and itself promotes Th1 differentiation. Therefore, Lactobacillus strains with an ability to induce Th1-biased state via IL-12 production, whereby Th2 responses are weakened, are expected to prevent IgE-mediated allergic diseases (Fujitaka et al., 2004; Shida et al., 2002; Cross et al., 2002; Pochard et al., 2002).

Recently, we isolated L. paracasei K71, as a potent inducer of IL-12 production, from Sakekasu (sake lees), a Japanese traditional fermented food coproduced during sake brewing. L. paracasei K71 exhibited a potential to suppress serum IgE levels in mice given the strain orally (Kumagai et al., 2013). This suppression of serum IgE levels could be explained by the modulation of Th1/Th2 balance toward Th1-dominant state in systemic immunity via L. paracasei K71-induced IL-12 production. In this study, we focused on the frequency of Th1/Th2 cells in splenocytes from OVA-immunized BALB/c mice upon administration of L. paracasei K71.

MATERIALS AND METHODS

Lactobacillus Strain

L. paracasei K71 used in this study were isolated from Sakekasu (sake lees), a Japanese traditional fermented food coproduced during sake brewing, and held at Kameda Seika Co., Ltd. (Niigata, Japan). After cultivation in MRS broth at 37°C for 24 h, the cells of Lactobacillus strains were harvested, washed with sterile distilled water and killed by heating at 105°C for 15 min. The resultant heat-killed cells were
lyophilized and then suspended in distilled water to be used in following experiments.

Mice

Female BALB/c mice at 5 weeks of age were purchased from Charles River Japan (Yokohama, Japan) and were maintained conventionally in plastic cages at about 22 °C under a 12-h light-dark cycle. The mice were provided with a standard MF diet (Oriental Yeast, Tokyo, Japan) and allowed ad libitum access to autoclaved water throughout the experimental period. This experiment was carried out according to the guidelines laid out by The Ethical Committee for Animal Experiments of Niigata University.

Oral Administration of Lactobacilli and Immunization

The schedule for in vivo experiments is summarized in Fig. 1. One mg of heat-killed cells of *Lactobacillus paracasei* K71 in 50 μL sterile water were orally administered to female BALB/c mice (6 weeks of age, n = 6 per group) everyday, in parallel with intraperitoneal immunization with 100 μg OVA and 1 mg Al(OH)₃ gel on day 0 and 14. As a control, 50 μL of sterile water, instead of heat-killed cells of *Lactobacillus paracasei* K71, was orally given to mice. For the measurement of total and OVA-specific IgE level, blood were collected from tail bleed every 7 days from day 0 to 28 and sera were separated by centrifugation (10,000 × g) at 4 °C for 10 min, and then stored at -80 °C before use in measurement. On day 35 to 42, mice were sacrificed and splenocytes were obtained for ex vivo IgE production assay and flow cytometry.

ELISA

For determination of total IgE, sandwich ELISA was employed using anti-mouse IgE antibody (LO-ME-2) (ZYMED, San Francisco, CA, USA) as a primary antibody and biotinylated anti-mouse IgE antibody (LO-ME-3) (Acris, Hiddenhausen, Germany) as a secondary antibody in combination with streptavidin-horseradish peroxidase (HRP) conjugate. OVA-specific IgE levels were also assessed by almost the same sandwich ELISA system using OVA for coating the ELISA plates instead of primary antibody. As HRP substrate, 3,3',5,5'-tetramethylbenzidine (Sigma-Aldrich, St Louis, MO, USA) were used and absorbance at 450 nm was measured using a microplate reader (Model 680, BIORAD, Hercules, CA, USA).

Ex Vivo Splenocyte Culture

Spleen from individual mouse was made into single cell suspension containing splenocytes. Red blood cells were removed from splenocytes by incubating with red blood cell lysis buffer (150 mM NH₄Cl, 1 mM KHCO₃, 0.1 mM EDTA, pH 7.2). Splenocytes obtained from mice were seeded at 2 x 10⁶ cells/mL in 96-well flat-bottomed culture plates and cultivated with 100 μg/mL OVA in RPMI-1640 containing 10 % (vol/vol) heat-inactivated fetal bovine serum, 100 U/mL penicillia and 100 μg/mL streptomycin, under a humidified atmosphere of 5 % CO₂ at 37 °C. Following cultivation for 14 days, culture supernatants were collected to measure the amount of total IgE by ELISA.

Flow Cytometry

After removing red cells by incubating with red blood cell lysis buffer, splenocytes were washed and resuspended in phosphate buffered saline (PBS) containing 0.1% BSA. Subsequently, cells were stained with FITC-conjugated anti-CD3 mAb (Beckman coulter, Miami, USA), PE-conjugated anti-CD4 mAb (Beckman coulter), PerCP-conjugated anti-CD183 (XCXCR3) mAb (Biologend, San Diego, CA, USA) and APC-conjugated anti-CD194 (CCR9) mAb (Biologend). After staining, the cells were analyzed by FACS Calibur (BD Biosciences, San Jose, CA, USA). A minimum of 10,000 events in the lymphocyte gate were collected and data analysis was performed using CellQuest software (BD Biosciences). Appropriate isotype-matched, irrelevant mAbs served as negative control.

Statistical Analysis

Data are represented as the mean ± standard deviation (SD). Statistical differences between the means of administered and control groups were tested using one-way analysis of variance (ANOVA) and Fisher's protected least significant difference (PLSD). A p-value of less than 0.05 was considered statistically significant.
Induction of Th1 cells by *L. paracasei* K71

(A)
(B)

Fig. 2. Serum IgE levels in OVA-immunized mice. Lyophilized powder of heat-killed *L. paracasei* K71 was suspended in sterile water and administered orally to mice at 1 mg/mouse/day. Total IgE (A) and OVA-specific IgE (B) levels in serum on day 35 were determined by ELISA. Data represent mean ± SD of six mice per group (n = 6).

Fig. 3. *Ex vivo* IgE production in splenocyte culture. Splenocytes from OVA-immunized BALB/c mice were cultured with OVA (100 μg/ml) for 14 days. Total IgE in culture supernatants were determined by ELISA. Data represent mean ± SD (n = 6).

RESULTS

Serum IgE levels

L. paracasei K71 was administered orally to OVA-immunized mice at 1 mg/day/mouse and the sera were collected every 7 days during the experiment. The concentrations of total IgE and the levels of OVA-specific IgE in serum on day 35 were shown in Fig. 2. OVA-immunization without administration of *L. paracasei* K71 resulted in gradual elevation of both total and OVA-specific IgE levels in serum during the experimental period. Administered *L. paracasei* K71 exhibited the ability to reduce total and OVA-specific IgE level in serum with statistical significance (P < 0.05).

Ex vivo IgE production by splenocytes

After confirming decreased levels of total and OVA-specific IgE in serum by oral administration of *L. paracasei* K71, splenocytes from individual mouse were collected on day 35 to 42 and stimulated with OVA in culture for 14 days. Fig. 3 shows the concentration of total IgE in culture supernatants of splenocytes. Concentration of total IgE was significantly lower in culture supernatants of splenocytes from GABA-administrated mice than those in control mice (P < 0.05). IgE in culture supernatants of splenocytes without OVA were below the limits of detection (data not shown). In accordance with serum IgE level described above, the IgE production level in splenocytes was significantly lower in the

L. paracasei K71-administrated mice compared to that in the control mice.

CD183 and CD194 expression in helper T cells

It has been revealed that helper T cell phenotypes are accompanied by certain cell surface markers, particularly chemokine receptors. CXCR3 (CD183), the receptor for IP-10 (CXCL10), I-TAC (CXCL11) and Mig (CXCL9), is highly expressed on Th1 cells and down-regulated on Th2 cells. In contrast, CCR4 (CD194), the receptor for TARC (CCL17) and MDC, is preferentially found on Th2 cells but on Th1 cells. Orally administered *L. paracasei* K71 showed increased percentage of CXCR3-expressing helper T (CXCR3'CCR4' CD3'CD4') cells concomitant with decreased percentage of CCR4-expressing helper T (CXCR3'CCR4'CD3'CD4') cells in splenocytes (Fig 4). It seems that *L. paracasei* K71 can potentially induce Th1 cells and reduce Th2 cells *in vivo*. Although we cannot totally exclude the possibility that Th1 and/or Th2 cells are in part contained among CXCR3'CCR4' double-positive T cells, most of which must be within populations of naive helper T cells (Th0) cells and fewer polarized T cells than Th1 and Th2 cells (Kim et al., 2001). Almost no significant changes between the percentages of helper T (CD3'CD4') cells in splenocytes from *L. paracasei* K71-administrated mice and control mice were detected (data not shown).
experimental evidences that indicate certain *Lactobacillus* strain with stimulatory activity for IL-12 production is potentially effective in lowering serum IgE levels in murine models (Matsuzaki et al., 2008; Sashihara et al., 2006; Segawa et al., 2008). Recently, we demonstrated that *L. paracasei* K71, isolated from Sakekasu as a potent inducer of IL-12 production, suppress serum IgE levels in mice given the strain orally (Kumagai et al., 2013). It is possible that administered *L. paracasei* K71 can modulate the imbalance between Th1 and Th2 cells through induction of Th1 cells in systemic immunity, leading to suppression of IgE production. However, there is almost no available information concerning the change in Th1/Th2 cells population in mice upon oral administration of lactobacilli. Therefore, we investigated the frequency of Th1 and Th2 cells, as well as IgE production, in splenocytes from OVA-immunized BALB/c mice given *L. paracasei* K71 orally.

A number of groups have reported that adhesion molecules and chemokines selective for Th1 and Th2 cells are involved in the differential recruitment of these two subsets (Springer, 1994; Yoshie et al., 1997). In this context, differential expressions of certain chemokine receptors in Th1 and Th2 cells have been identified intensively. Previous studies provide evidence that Th1 cells preferentially express CXCR3 (CD183) while Th2 cells selectively express CCR4 expression pattern, whereas expression and functionality of CCR4 are generated depending on IL-4, a Th2 cytokine (Nakajima et al., 2002; Morimoto et al., 2005). Based on their different CXCR3 and CCR4 expression pattern, the populations of Th1 and Th2 cells in splenocytes were measured by flow cytometry.

When administered with *L. paracasei* K71, OVA-immunized BALB/c mice exhibited reduced total and OVA-specific IgE levels in serum than those in control mice (Fig. 2). Furthermore, *ex vivo* IgE production level by splenocytes from mice given *L. paracasei* K71 orally was significantly decreased (Fig. 3). The reduction of serum IgE levels by administrated *L. paracasei* K71 could be explained by the decrease of IgE production in the splenocytes. Furthermore, we demonstrated that the balance of Th1 (CXCR3⁵ CCR4⁻CD4⁺) cells to Th2 (CXCR3⁻CCR4⁺CD4⁺) cells were upregulated by orally administrated *L. paracasei* K71 (Fig. 4). In line with our previous *in vitro* study, *L. paracasei* K71 exhibited strong potential to induce Th1 cells and reduce Th2 cells in *in vivo*. It may explain in part the beneficial effects of *L. paracasei* K71 in the treatment of Th2-dependent allergic diseases through promoting Th1 cells to improve Th1/Th2 balance, leading to lower serum IgE level.

In human clinical trials, *L. paracasei* K71 was found to ameliorate the symptoms in atopic dermatitis patients (Moroi et al., 2010). Further examination concerning immunomodulatory effects of *L. paracasei* K71 on symptoms in NC/Nga mice, which are accepted as a suitable model for human atopic dermatitis, are now on going in our research group.
group. In the present study, we demonstrated a potential use of *L. paracasei* K71 in promoting Th1 cells in vivo. Besides anti-allergic effect, *L. paracasei* K71 may have different immunological functions, such as improving effects against infectious diseases, through enhancing Th1-immunity.

ACKNOWLEDGMENT

This work was supported in part by the grant from Regional Innovation Research and Development Operation, Kanto Bureau of Economy, Trade and Industry.

REFERENCES

Lactobacillus paracasei K71投与によるオポアルブミン感作
BALB/cマウスにおけるTh1細胞増加とTh2細胞減少

寺平拓也１・原崇２*・熊谷武久１・井口真理子３・城斗志夫２
（平成25年1月30日受付）

キーワード：Lactobacillus paracasei K71, IgE, Th1/Th2, CXCR3 (CD183), CCR4 (CD194)