<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>誌名</td>
<td>野菜茶業研究所研究報告</td>
</tr>
<tr>
<td>ISSN</td>
<td>13466984</td>
</tr>
<tr>
<td>巻/号</td>
<td>1</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 23-35</td>
</tr>
<tr>
<td>発行年月</td>
<td>2002年3月</td>
</tr>
</tbody>
</table>
青枯病抵抗性‘とまと中間母本農9号’の育成とその特性†

門馬 信二*・吉田 建実・松永 啓・佐藤 隆徳**
成河 智明***・坂田 好輝・飛騨 健一****

(平成13年12月11日受理)

'Tomato Chuukanbohon Nou 9', a Tomato Parental Line with Bacterial Wilt Resistance.

Shinji Monma, Tatemi Yoshida, Hiroshi Matsunaga, Takanori Sato,
Tomoaki Narikawa, Yoshiteru Sakata and Ken-ichi Hida

Synopsis

'Tomato Chuukanbohon Nou 9', synonym of 'Tomato Parental Line 9', with a high level of bacterial wilt resistance and a larger fruit size was developed. The level of resistance to bacterial wilt of the line was clearly higher than those of the leading varieties for fresh market and of the rootstock, 'Kagemusha'. Compared with the highly resistant cultivar 'Hawaii7998', the resistance was identical or slightly lower. The resistance to bacterial wilt may be controlled by a small number of genes with major effect. In addition, no association of bacterial wilt resistance with the fruit size, color and shape was observed. The fruit of 'Tomato Chuukanbohon Nou 9' is slightly flattened round, pink in outer color and the commercial size averages 160 to 200g. The cultivar is very promising as a breeding material for fresh-market variety with bacterial wilt resistance.

Key Words: tomato, Lycopersicon esculentum, Bacterial wilt, Ralstonia solanacearum, resistance, breeding, fresh market

I 緒 言

青枯病はトマト栽培において最も重要な土壌伝染性病害の１つであり、発病株のほとんどが枯死するために被害は大きい。青枯病菌（Ralstonia solanacearum）の発育適温は35〜37℃であり、露地栽培では6月ごろより盛夏期にかけて多発するが、施設栽培では比較的低温な時期でも発生する。病原菌は土中で数年間持続力を保持するために、輪作の効果が上がり難く、土壌処理により防除が行われているが、オメガメタニの使用禁止が予定されており、最も有効な手段として抵抗性品種利用の重要度が増している。

1975年に抵抗性品種として'Hawaii 7998'が導入されて以来（山川、1978）、'LS89'の系統名で台木として用いられるとともに（安永ら、1983；米山、1985）、これ
1985年10月25日

図-1 ‘とまと中間母本農9号’の育成経過

FV (12) : FV (12)-2-13-1-1-1

II 育成経過

1985年に青枯病に強度抵抗性であるが果実が90g程度と小さく赤色果の‘金剛’(台湾農友種苗育成)と青枯病、半身青枯病、ネコプロセンチュウに抵抗性の‘FV (12)-2-13-1-1-1’(長野県中信農業試験場の選抜系統)との交雑し、青枯病抵抗性についてF1世代で選抜を続けた。F2世代で選抜した‘TBwf04D-3-11’は果色は桃色であるが、抵抗性、果実形質ともに不十分であったことから、これに大果で青枯病に中程度の抵抗性を示す‘LS1811’の分離後代の‘LS1811-2’を交雑し、抵抗性と果実形質について選抜を続けた。1996年にF5世代で、青枯病に強度抵抗性を示し、果実形質は実用果種よりも劣るが、果色は桃色で、果実は市販果種と変わらない大きさに上向した系統を得たので、‘トマト安濃6号’の系統名で1997～1999年にわたり特性検定試験を実施した(図-1)。その結果、本系統は青枯病抵抗性素材としての優秀性が認められたことから、2000年に‘とまと中間母本農9号’として中間母本登録され、同名で品種登録出願された(品種登録出願番号第12645号、平成12年7月10日)。

III 系統特性

1 青枯病抵抗性

青枯病菌は野菜・茶業試験場(三重県安芸郡安濃町)の汚染圃場で発生したトマトから分離し、TTC培地(KELMAN, 1954)で分離培養したものを利用。青枯病菌の同定及び病原性の確認は、圃場における植物体の病状の確認、植物体分離株の顕微鏡下での形態的観察、TTC培地上でのコロニー形成状況の観察、再増殖菌の形態観察、無菌土壌を用いた検定用具品種での再増殖菌接種により行った。菌はジャガイモ半合成液体培地
（Wakimoto, 1962）を用い、30°Cで48時間培養を続け、所定の濃度に希釈して接種菌液とした。

各年の接種条件は表-1のとおりである。

幼苗検定における浸種接種法では、播種箱で育苗した苗を掘り上げ、良好な洗浄した後、根部を青枯病接種菌液に約10分間浸漬し、その後、土壌温水槽（土壌病害抵抗性選抜装置、株小澤製作所）に植え付けた。一方、断根灌注接種法では、各品種・系統を土壌温水槽に播種し、接種日にカタナナイフで断根し、青枯病接種菌液を2ml灌注接種した。いずれの接種法においても接種後の地温は30°Cに設定し、3〜5週間後に健全株率を調査した。

なお、晴天の日にウサギ状の症状が認められ、個体を健全株とした。

汚染圃場検定では、慣行の育苗を行った苗を場内の青枯病汚染圃場に定植した。接種は各個体を断根処理を行い、株元に青枯病接種菌液50mlを土壌灌注した。個体ごとにウサギ開始日、枯死日を記録し、灌注接種日以前に枯死したもの1、接種後6日以内に枯死したもの2とし、その後7日ごとに1を加え、最短を13とする抵抗性指数を算出し、抵抗性を評価した。

'1とまと中間母本農9号'は、幼苗検定、汚染圃場検定とともに、生食用青枯病抵抗性品種の'瑞栄'より強い青枯病抵抗性を示し、抵抗性台本品種の'瑞栄'に比べても健全株率、抵抗性指数は高く、抵抗性台本品種と同等の強度抵抗性を有していた（表-2, 3）。

'LS89 (Hawaii 7998)'との比較ではやや弱～同等であり、1とまと中間母本農9号は強接種条件下で発病する。

2 青枯病抵抗性の遺伝解析

り病性親として'桃太郎'を用い、'1とまと中間母本農9号'とF1, F2世代を1990年3月8日播種で慣行法により育苗し、4月22日に青枯病汚染圃場へ定植した。

7月8日に、各個体とも断根処理を行い、株元に4×10⁶個/mlの濃度に調製した青枯病接種菌液50mlを土壌灌注接種した。抵抗性の評価は灌注接種日以前に枯死したもの1、接種後6日以内に枯死したものを2とし、その後6日ごとに1を加え、最短を13とする抵抗性指数により行った。

'桃太郎'をり病性親としたF1, F2世代の抵抗性指数は両親の中間値よりも低く、表現型からみた抵抗性はり病性に対し部分劣性であった（表-4, 図-2）。一方、F1, F2世代の抵抗性指數の分散および両親の平均値から求めた有効因子数は2.276であり、1とまと中間母本農9号は青枯病抵抗性に累積的効果のある複数遺伝子を有するものとみられる。
表3 とまと中間母本病9号及び対照品種の育成地汚染圃場における青枯病抵抗性

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>とまと中間母本病9号</td>
<td>10</td>
<td>12.5</td>
<td>8</td>
<td>11.5</td>
</tr>
<tr>
<td>大型福寿 8</td>
<td>8</td>
<td>1.0</td>
<td>8</td>
<td>1.0</td>
</tr>
<tr>
<td>瑞栄 8</td>
<td>10</td>
<td>5.2</td>
<td>8</td>
<td>7.8</td>
</tr>
<tr>
<td>影武者 12</td>
<td>10</td>
<td>8.7</td>
<td>7</td>
<td>10.9</td>
</tr>
<tr>
<td>LS89 12</td>
<td>10</td>
<td>13.0</td>
<td>8</td>
<td>13.0</td>
</tr>
<tr>
<td>おとりこ 8</td>
<td>10</td>
<td>1.0</td>
<td>8</td>
<td>1.0</td>
</tr>
<tr>
<td>桃太郎 8</td>
<td>8</td>
<td>5.8</td>
<td>8</td>
<td>1.1</td>
</tr>
</tbody>
</table>

注: 接種39日後までの判定。1:弱病性～13:強度抵抗性。

表4 とまと中間母本病9号の青枯病抵抗性の遺伝解析

<table>
<thead>
<tr>
<th>品種・系統名</th>
<th>供試個体数</th>
<th>抵抗性指数 4</th>
<th>同左</th>
</tr>
</thead>
<tbody>
<tr>
<td>とまと中間母本病9号</td>
<td>P1</td>
<td>8</td>
<td>11.5</td>
</tr>
<tr>
<td>桃太郎</td>
<td>P2</td>
<td>8</td>
<td>1.0</td>
</tr>
<tr>
<td>F1 (P2×P1)</td>
<td>12</td>
<td>4.3</td>
<td>5,521</td>
</tr>
<tr>
<td>F2 (P2×P1)</td>
<td>106</td>
<td>8.3</td>
<td>11,576</td>
</tr>
</tbody>
</table>

有効因子数 4

r = 2.276

1999年3月8日接種で4月22日に青枯病汚染園圃場に植え、7月8日に、各個体とも断根処理を行い、株元に4×10^8個/mlの濃度で効果的日本職業菌懸濁液50mlを土壌灌注接種。

注: 灌注接種日以前に枯死したものを1、接種後6日以内に枯死したものを2とし、その後6日ごとに1を加え、最強を13とする指数。

Wright（1934）

図2 青枯病抵抗性遺伝解析における抵抗性指数の頻度分布。

試験条件は表4参照。

図3 F1世代における青枯病抵抗性と1果重の関係。

試験条件は表4参照。

果重が0となっているのは枯死等のため収穫調査しなかったもの。
られた。F 数世代では抵抗性親と同等の強度抵抗性個体が比較的多い頻度で認められることから、抵抗性の因子は比較的少なく、本系統を用いた交雑後代から強度抵抗性個体の選抜が可能である。なお、1 果重と抵抗性指数との間には特別の関係は認められなかった（図-3）。

3 他の植物害抵抗性

‘とまと中間母本農 9 号’は接種し ToMV のストレイン全で発病株率が多く、りん病性であった（表-5）。また、根腐病調査に対し、りん病種類の‘おどりこ’と同等の発病がみられた（表-6）。

4 一般特性

育成系统的収量性、一般特性については、場内の普通栽培で検討した（表-7）。

表-5 ToMV 抵抗性検定結果（発病株率％）

<table>
<thead>
<tr>
<th>品種・系統名</th>
<th>ToMV ストレイン</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>とまと中間母本農 9 号</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>大型福良</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>CGR237 (Tm/Tm)</td>
<td>75</td>
<td>71</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>CGR526 (Tm-Tm/Tm-2)</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>CGR267 (Tm-Tm/Tm-2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

播種 1996 年 12 月 12 日、接種 1 月 27 日、
接種原: 農林水産省の許可命令を受けてイギリスから輸入した Pelham strains、
調整方法: りん病栽培菜の 100 倍量の蒸留水を加えて処理、
接種方法: カーボンダムによる機械接種。
接種前後の最低気温: 15℃、調査 2 月 25 日。

表-5 田中病調査抵抗性検定結果

<table>
<thead>
<tr>
<th>品種・系統名</th>
<th>供試株数</th>
<th>枯死株率</th>
<th>発病株率</th>
</tr>
</thead>
<tbody>
<tr>
<td>とまと中間母本農 9 号</td>
<td>20</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>とまと中間母本農 5 号</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ファーストモア</td>
<td>20</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>おどりこ</td>
<td>21</td>
<td>33</td>
<td>100</td>
</tr>
</tbody>
</table>

播種 1997 年 2 月 20 日、接種 3 月 13 日、
接種菌株: F212A（MAPF 番号 103048）、
接種方法: 菌液 1×10^7 個/ml の接種菌液に 5 分間浸漬、
接種条件: 気温 15℃、調査 4 月 5 日、

表-7 育成地における収量性。一般特性検定試験設計

<table>
<thead>
<tr>
<th>検定年次</th>
<th>播種日</th>
<th>定植日</th>
<th>施肥量（N-P-K）kg/6</th>
<th>株間距離（cm）</th>
<th>収穫期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>2.26</td>
<td>4.25</td>
<td>1.5-1.6-1.3</td>
<td>180 (70) × 40</td>
<td>6.27-8.02</td>
</tr>
<tr>
<td>1997</td>
<td>2.26</td>
<td>4.25</td>
<td>1.5-1.6-1.3</td>
<td>180 (70) × 40</td>
<td>6.20-8.05</td>
</tr>
<tr>
<td>1998</td>
<td>3.03</td>
<td>4.20</td>
<td>1.5-1.6-1.3</td>
<td>180 (70) × 40</td>
<td>6.18-7.29</td>
</tr>
<tr>
<td>1999</td>
<td>3.08</td>
<td>4.26</td>
<td>1.5-1.6-1.3</td>
<td>180 (70) × 40</td>
<td>6.21-8.02</td>
</tr>
</tbody>
</table>

* 2 うち節（2 条育成の利月）×株間。圃場は非火山灰性黒ポトト

表-8 一般特性

<table>
<thead>
<tr>
<th>品種・系統</th>
<th>第 1 果数</th>
<th>1 果当たりの葉数</th>
<th>果の形状</th>
<th>節間長（cm）</th>
<th>卷葉性</th>
<th>心茎ま (^{\text{98}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>とまと中間母本農 9 号</td>
<td>6.4</td>
<td>7.1</td>
<td>中</td>
<td>単純</td>
<td>4.5</td>
<td>4.7</td>
</tr>
<tr>
<td>桃太郎 8</td>
<td>7.3</td>
<td>7.9</td>
<td>中</td>
<td>単純</td>
<td>5.2</td>
<td>5.5</td>
</tr>
<tr>
<td>瑞栄</td>
<td>7.8</td>
<td>7.8</td>
<td>中</td>
<td>単純</td>
<td>4.2</td>
<td>5.0</td>
</tr>
</tbody>
</table>

調査年次: 1998-1999 年
5 特性検定試験における成績
1997～1999年にかけて千葉県農業試験場、兵庫県立中央農業技術センター、宮崎県総合農業試験場において特性検定試験を実施した。検定した病害虫抵抗性は青枯病、萎縮病（レース１）、半身萎縮病、ネコブセンチュウであり、各場所における試験計測概要は表2-1～15のとおりであった。

表9 果実特性

<table>
<thead>
<tr>
<th>品種・系統</th>
<th>果形</th>
<th>果の揃い</th>
<th>果皮の緑</th>
<th>果皮の色</th>
<th>果肉の濃漿</th>
<th>着色</th>
<th>完熟果色</th>
<th>一室数</th>
<th>果実の堅さ（kg）</th>
<th>完熟果色</th>
<th>糖度（Brix示度）</th>
</tr>
</thead>
<tbody>
<tr>
<td>とまと中間母本農９号</td>
<td>やや粗</td>
<td>やや良好</td>
<td>有</td>
<td>透明</td>
<td>中</td>
<td>6.8</td>
<td>5.5</td>
<td>桃</td>
<td>0.89</td>
<td>1.13</td>
<td>5.1</td>
</tr>
<tr>
<td>桃太郎</td>
<td>やや粗</td>
<td>良</td>
<td>有</td>
<td>透明</td>
<td>中</td>
<td>5.8</td>
<td>6.3</td>
<td>桃</td>
<td>1.33</td>
<td>1.75</td>
<td>6.0</td>
</tr>
<tr>
<td>瑞栄</td>
<td>やや粗</td>
<td>良</td>
<td>有</td>
<td>透明</td>
<td>中</td>
<td>4.8</td>
<td>6.0</td>
<td>桃</td>
<td>1.17</td>
<td>1.56</td>
<td>5.1</td>
</tr>
</tbody>
</table>

調査年次: 1998～1999年

表10 収量特性

<table>
<thead>
<tr>
<th>試験年次</th>
<th>品種・系統</th>
<th>開花始期</th>
<th>収穫始期</th>
<th>上物収量</th>
<th>頃</th>
<th>頃</th>
<th>頃</th>
<th>千分率</th>
<th>良果平均重</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>とまと中間母本農９号</td>
<td>5/4</td>
<td>6/26</td>
<td>162</td>
<td>379</td>
<td>668</td>
<td>56.7</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td></td>
<td>桃太郎</td>
<td>4/27</td>
<td>6/26</td>
<td>101</td>
<td>181</td>
<td>296</td>
<td>61.1</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td></td>
<td>桃太郎</td>
<td>5/2</td>
<td>6/23</td>
<td>303</td>
<td>526</td>
<td>668</td>
<td>78.7</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td></td>
<td>瑞栄</td>
<td>5/4</td>
<td>6/26</td>
<td>396</td>
<td>727</td>
<td>906</td>
<td>80.2</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td></td>
<td>桃太郎</td>
<td>4/27</td>
<td>6/18</td>
<td>235</td>
<td>414</td>
<td>550</td>
<td>75.2</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td></td>
<td>瑞栄</td>
<td>4/27</td>
<td>6/17</td>
<td>348</td>
<td>621</td>
<td>830</td>
<td>75.7</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>とまと中間母本農９号</td>
<td>5/7</td>
<td>6/28</td>
<td>208</td>
<td>445</td>
<td>644</td>
<td>69.1</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>桃太郎</td>
<td>5/6</td>
<td>6/23</td>
<td>208</td>
<td>572</td>
<td>746</td>
<td>76.7</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td></td>
<td>瑞栄</td>
<td>5/4</td>
<td>6/23</td>
<td>320</td>
<td>918</td>
<td>1042</td>
<td>88.1</td>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>

表11 くず果割合

<table>
<thead>
<tr>
<th>試験年次</th>
<th>品種・系統</th>
<th>チャック・ 希果</th>
<th>奇形果</th>
<th>小果</th>
<th>その他</th>
<th>くず果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>とまと中間母本農９号</td>
<td>5.8</td>
<td>21.2</td>
<td>3.1</td>
<td>13.2</td>
<td>43.3</td>
</tr>
<tr>
<td></td>
<td>桃太郎</td>
<td>9.9</td>
<td>1.3</td>
<td>19.1</td>
<td>8.6</td>
<td>38.9</td>
</tr>
<tr>
<td></td>
<td>瑞栄</td>
<td>1.2</td>
<td>6.8</td>
<td>5.1</td>
<td>6.7</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td>桃太郎</td>
<td>9.0</td>
<td>2.4</td>
<td>8.1</td>
<td>1.8</td>
<td>21.3</td>
</tr>
<tr>
<td>1998</td>
<td>とまと中間母本農９号</td>
<td>5.1</td>
<td>23.4</td>
<td>8.5</td>
<td>15.8</td>
<td>61.6</td>
</tr>
<tr>
<td></td>
<td>桃太郎</td>
<td>5.9</td>
<td>1.7</td>
<td>13.9</td>
<td>1.3</td>
<td>24.8</td>
</tr>
<tr>
<td></td>
<td>瑞栄</td>
<td>1.1</td>
<td>10.1</td>
<td>7.6</td>
<td>2.1</td>
<td>24.3</td>
</tr>
<tr>
<td>1999</td>
<td>とまと中間母本農９号</td>
<td>15.1</td>
<td>2.2</td>
<td>6.7</td>
<td>6.9</td>
<td>30.9</td>
</tr>
<tr>
<td></td>
<td>桃太郎</td>
<td>5.2</td>
<td>8.3</td>
<td>8.1</td>
<td>1.7</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td>瑞栄</td>
<td>0.6</td>
<td>0.7</td>
<td>5.4</td>
<td>5.2</td>
<td>11.9</td>
</tr>
</tbody>
</table>
された。したがって、検定地の菌株によって反応は異なるが、'とまと中間母本農9号'の青枯病抵抗性は'LS89'のレベルに近く、全場所より3年間を通じて'優れ者'との評価を得た。

2) 姫病抵抗性

'とまと中間母本農9号'は病性標準品種の'大型福寿'より発病が少なく、姫病（レース1）抵抗性を有していた（表-17）。しかし、兵庫県ではかわり発病がみられること、姫病菌レース2、3の侵入が確認されていることから、姫病菌抵抗性素材としての有用性は低いと判断された。

3) 半身姫病抵抗性

'とまと中間母本農9号'は病性品種と同等の発病がみられ、半身姫病菌に病性と評価された（表-18）。

<table>
<thead>
<tr>
<th>表-12</th>
<th>青枯病抵抗性検定試験設計概要</th>
</tr>
</thead>
</table>
| 検定場所 | 年次 | 播種日 | 接種日 | 調査日 | 接種方法 | 試験規模
| | | | | | | 株数×反復
| 千葉農試 | 97 | 8/22 | 9/12 | 10/1 | 2×10^6個/mlの菌液で根部浸漬接種、温度29℃ | 8×2
| | 98 | 9/4 | 9/30 | 10/26 | □ | 8×2
| | 99 | 9/17 | 10/13 | 10/23 | 2×10^6個/mlの菌液で根部浸漬接種、温度28℃ | 8×2
| 兵庫中央農試センター | 97 | 6/11 | 8/29 | 7月14日に場内青枯病発病営に定常 | 12〜25×2
| | 98 | 5/28 | 8/14 | 7月7日に場内青枯病発病営に定常 | 9〜22×2
| | 99 | 5/12 | 8/15 | 6月16日に場内青枯病発病営に定常 | 29〜45×1
| 宮崎総農試 | 97 | 3/31 | 5/20 | 6/12 | 10^5個/mlの菌液を用い断根浸漬法で接種 | 10×3
| | 98 | 4/1 | 5/20 | 6/11 | □ | 10×5
| | 99 | 4/16 | 6/14 | 7/2 | □ | 10×5

使用菌株は各検定地における発生菌株

<table>
<thead>
<tr>
<th>表-13</th>
<th>姫病（レース1）抵抗性検定試験設計概要</th>
</tr>
</thead>
</table>
| 検定場所 | 年次 | 播種日 | 接種日 | 調査日 | 接種方法 | 試験規模
| | | | | | | 株数×反復
| 千葉農試 | 97 | 8/22 | 9/9 | 9/29 | 菌液懸濁液に根部浸漬接種、温度27℃ | 20×1
| | 98 | 9/4 | 9/28 | 10/15 | □ | 15×1
| | 99 | 9/17 | 10/7 | 10/26 | □ | 20×1
| 兵庫中央農試センター | 97 | 4/1 | 5/13 | 7/1 | 8×10^6個/mlの菌懸濁液で根部浸漬接種 | 12〜25×2
| | 98 | 4/3 | 4/22 | 7/9 | 8.67×10^6個/mlの菌懸濁液で根部浸漬接種 | 9〜22×2
| | 99 | 4/5 | 4/30 | 8/9 | 5.60×10^6個/mlの菌懸濁液で根部浸漬接種 | 29〜45×1
| 宮崎総農試 | 97 | 3/31 | 4/23 | 6/6 | 10個/mlの菌懸濁液に根部浸漬接種 | 10×3
| | 98 | 6/16 | 6/30 | 7/13 | □ | 10×5
| | 99 | 8/13 | 8/25 | 9/7 | □ | 10×5

使用菌株は各検定地における発生菌株

<table>
<thead>
<tr>
<th>表-14</th>
<th>半身姫病抵抗性検定試験設計概要（1997年）</th>
</tr>
</thead>
</table>
| 検定場所 | 播種日 | 接種日 | 調査日 | 接種方法 | 試験規模
| | | | | | 株数×反復
| 千葉農試 | 8/12 | 9/26 | 10/17 | 菌懸濁液に根部浸漬接種、慣行管理 | 9×2
| 兵庫中央農試センター | 4/1 | 5/13 | 7/1 | 9.6×10^5個/mlの菌懸濁液で根部浸漬接種 | 12〜25×2

使用菌株は各検定地における発生菌株

<table>
<thead>
<tr>
<th>表-15</th>
<th>ニコプセンチュウ抵抗性検定試験設計概要</th>
</tr>
</thead>
</table>
| 検定場所 | 年次 | 播種日 | 接種日 | 調査日 | 接種方法 | 試験規模
| | | | | | | 株数×反復
| 千葉農試 | 98 | 9/4 | 9/18 | 10/5 | 本葉1.5期に汚染土へ移植 | 23×1
| | 99 | 7/27 | 8/10 | 9/25 | 本葉2期に汚染土へ移植 | 18×2
| | 99 | 9/17 | 10/6 | 10/26 | □ | 24×2
表−16 特性検定場所における青枯病抵抗性検定結果

<table>
<thead>
<tr>
<th>試験年次</th>
<th>品種・系統名</th>
<th>千葉農試</th>
<th>兵庫中央農試センター</th>
<th>宮崎総農試</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>発病株率</td>
<td>発病指数</td>
<td>判定</td>
</tr>
<tr>
<td>1997年</td>
<td>とまと中間母本農9号</td>
<td>18.7</td>
<td>6</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>大型福寿</td>
<td>100.0</td>
<td>93</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>瑞栄</td>
<td>62.5</td>
<td>37</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>影武者</td>
<td>31.2</td>
<td>16</td>
<td>83.3</td>
</tr>
<tr>
<td>1998年</td>
<td>とまと中間母本農9号</td>
<td>6.3</td>
<td>2</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>大型福寿</td>
<td>68.7</td>
<td>56</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>瑞栄</td>
<td>12.5</td>
<td>13</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>影武者</td>
<td>33.3</td>
<td>13</td>
<td>64.5</td>
</tr>
<tr>
<td></td>
<td>LS89</td>
<td>31.3</td>
<td>31</td>
<td>10.8</td>
</tr>
<tr>
<td>1999年</td>
<td>とまと中間母本農9号</td>
<td>25.0</td>
<td>11</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>大型福寿</td>
<td>100.0</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>瑞栄</td>
<td>81.2</td>
<td>55</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>影武者</td>
<td>62.5</td>
<td>48</td>
<td>82.5</td>
</tr>
<tr>
<td></td>
<td>LS89</td>
<td>0.0</td>
<td>0</td>
<td>10.8</td>
</tr>
</tbody>
</table>

標準品種：‘大型福寿’（りん病性白生用品種）、‘瑞栄’（抵抗性生用品種）、‘影武者’（抵抗性台木用品種）、‘L S 89’（抵抗性台木用品種、参考）。

発病指数：各個体の発病程度／（5×個体数）×100 発病程度は個体毎に 0: 一部病微しうる、4: 枯死で評価。
判定：‘大型福寿’、‘瑞栄’に対し〇: 優れる、△: 同等、×: 劣る。

表−17 特性検定場所における萎病抵抗性検定結果

<table>
<thead>
<tr>
<th>検定年次</th>
<th>品種・系統名</th>
<th>千葉農試</th>
<th>兵庫中央農試センター</th>
<th>宮崎総農試</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>発病株率</td>
<td>発病指数</td>
<td>判定</td>
<td>発病株率</td>
</tr>
<tr>
<td>1997年</td>
<td>とまと中間母本農9号</td>
<td>0.0</td>
<td>0</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>大型福寿</td>
<td>100.0</td>
<td>93</td>
<td>42.9</td>
</tr>
<tr>
<td></td>
<td>興津1号</td>
<td>0.0</td>
<td>0</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>Walter</td>
<td>0.0</td>
<td>0</td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td>NDM051</td>
<td>–</td>
<td>–</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>カゴメ77</td>
<td>–</td>
<td>–</td>
<td>38.5</td>
</tr>
<tr>
<td>1998年</td>
<td>とまと中間母本農9号</td>
<td>0.0</td>
<td>0</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>大型福寿</td>
<td>100.0</td>
<td>89</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>興津1号</td>
<td>0.0</td>
<td>0</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td>Walter</td>
<td>0.0</td>
<td>0</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>NDM051</td>
<td>–</td>
<td>–</td>
<td>39.1</td>
</tr>
<tr>
<td></td>
<td>カゴメ77</td>
<td>–</td>
<td>–</td>
<td>45.0</td>
</tr>
<tr>
<td>1999年</td>
<td>とまと中間母本農9号</td>
<td>0.0</td>
<td>0</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>大型福寿</td>
<td>100.0</td>
<td>93</td>
<td>89.7</td>
</tr>
<tr>
<td></td>
<td>興津1号</td>
<td>0.0</td>
<td>0</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>Walter</td>
<td>0.0</td>
<td>0</td>
<td>57.9</td>
</tr>
<tr>
<td></td>
<td>NDM051</td>
<td>–</td>
<td>–</td>
<td>68.9</td>
</tr>
</tbody>
</table>

標準品種：‘大型福寿’（りん病性）、‘興津1号’（抵抗性）、‘Walter’（抵抗性）。
発病指数：各個体の発病程度／（4×個体数）×100 発病程度は個体毎に 0: 外部病微しうる、4: 枯死で評価。
判定：‘大型福寿’に対し〇: 優れる、△: 同等、×: 劣る。
表18 特性検定場所における半身萎調病抵抗性検定結果（1997年）

<table>
<thead>
<tr>
<th>品種・系統名</th>
<th>千葉農試</th>
<th>兵庫中央農技センター</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>発病株率</td>
<td>発病指数</td>
</tr>
<tr>
<td>とまと中間母本9号</td>
<td>61.1</td>
<td>23</td>
</tr>
<tr>
<td>大型福寿</td>
<td>56.2</td>
<td>18</td>
</tr>
<tr>
<td>Tropic</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>NDM051</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>カゴメ77</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

標準品種：‘大型福寿’（感病性）, ‘Tropic’（抵抗性）。
発病指数：Σ各個体の発病程度/（4×個体数）×100。
発病程度は個体毎0を外部病徵なし～4を枯死で評価。
判定：‘大型福寿’に対し○:優れる，△:同等，×:劣る。

表19 特性検定場所におけるネコブセンチュウ抵抗性検定結果（千葉農試）

<table>
<thead>
<tr>
<th>品種・系統名</th>
<th>1998年</th>
<th>1999年 第1回</th>
<th>1999年 第2回</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>発害株率</td>
<td>発害指数</td>
<td>判定</td>
</tr>
<tr>
<td>とまと中間母本9号</td>
<td>65.2</td>
<td>17</td>
<td>△〜○</td>
</tr>
<tr>
<td>大型福寿</td>
<td>100.0</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Anahulu</td>
<td>0.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ハウス株太郎</td>
<td>9.1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

標準品種：‘大型福寿’（感病性）, ‘Anahulu’（抵抗性）。
発害指数：Σ各個体の発害程度/（4×個体数）×100。
発害程度は個体毎0を寄生なし～4を顕著な発害で評価。
判定：大型福寿に対し○:優れる，△:同等，×:劣る。

4）ネコブセンチュウ抵抗性
‘とまと中間母本9号’は抵抗性標準品種の‘Anahulu’
よりネコブセンチュウの被害指数が大きく、主倉発生者（M）による抵抗性を有さないが、被害株率、被害指数
等が感受性標準品種より低い傾向があり、圃場抵抗性を
有する可能性があると評価された（表19）。

IV 考察

‘とまと中間母本9号’は青枯病に対して市販の生食
用品質や主要な台木用品質の‘影武者’よりも強く、台
木用品質‘LS89’と同等ないしやや劣る強度抵抗性を有
する。果色は桃色で、やや偏球形。平均果重は160～
200gであり、生食用大玉品種としての要件を備えている。
りん病性品種とのF1世代の抵抗性は中間親より弱
い方に偏るが、F2世代では‘とまと中間母本9号’と
同等の抵抗性を有するものが比較的多く出現し、果実の
大きさ等との関連もみられないことから、生食用大玉ト
マトの青枯病抵抗性品種育成の育種素材として利用可能
であること、さらに、代表的なF1品種に比べ糖度が
やや低く、果実が軟らかい。また、奇形果の発生が多い
などの欠点を有するため、組合せ相手に留意する必要が
ある。また、染調病（レース1）に抵抗性があるが、半
身染調病、根腐染調病、TuMVに対してはりん病であり、
利用上注意が必要である。

青枯病抵抗性については、従来より果実の大きさとの関
係が指摘され、果実の小さいものが抵抗性が強く、高品質
な抵抗性品種を育成する上での問題になるとされていた
（ACOSTA et al., 1964；BOSCH et al., 1982；SONODA
et al., 1979）。しかし、抵抗性と果実の大きさには相関は
ないとの報告もある（FERRER et al., 1974；MONMA
et al., 1997）。‘LS89’と同等の強度抵抗性を示し、果実
は160〜200gと大きい‘とまと中間母本9号’の育成は
これを裏付ける証である。果実が大きく、青枯病強度
抗性の品種がこれまで育成されてこなかったのは、抵抗性
が果実の小さいLycopersicon pimpinellifolium, L. esculentum var. pyriformeやL. esculentum var. cerasiforme
に由来し、果実の大きさ、青枯病抵抗性ともにポリジェン支配であり、選抜に時間を要するためと推察
される。
青枯病抵抗性の遺伝については、多くの抵抗性品種において比較的少数の相加的効果を有する遺伝子が関与すると言われている（Costa et al., 1964; Monma et al., 1997）。

1) 'とまと中間母本農9号'は、青枯病強度抵抗性の’極端’と’FV (12)-2-13-1-1-1’を交雑し、そのF1世代に大果で青枯病に中程度の抵抗性を有する’LS1811-2’を交雑した後世代から選抜された大果性の青枯病抵抗性固定系統であり、2000年8月に中間母本登録された。

2) 青枯病抵抗性は市販の生食用品種や主要な台木用品種の‘影響者’よりも強く、青枯病強度抵抗性の台木用品種’LS89’と同等ないしやや劣る。

3) 'とまと中間母本農9号'なり抵抗性品種とのF1は両親の中間値よりも弱い青枯病抵抗性を示し、そのF1世代では‘とまと中間母本農9号’と同等の抵抗性個体の出現が認められる。したがって青枯病抵抗性は比較的少数の複数遺伝子支配とみられる。なお、青枯病抵抗性と果実の大きさ、色、形、果実の挙げ等の主要な一般形質との間に連鎖は認められない。

4) 'とまと中間母本農9号’の果色は桃色で、やや偏球形、平均果重は160〜200gである。

5) 'とまと中間母本農9号'は代表的なF1品種に比べ糖度がやや低く、果実が軟らかいため、また、奇形果の発生が多いなどの欠点を有するため、実用品種としての普及性は低いが、生食用大玉トマトの育種素材として極めて有望である。

6) 'とまと中間母本農9号'は萎調病（レース1）に抵抗性であるが、半身萎調病、根腐萎調病、ToMVに対してもはり病性である。

V 摘 要
写真1 トマト中間母本農9号の植物体

写真2 着果状況

写真3 果実
引用文献

4) 野田光生・吉田順夫・土屋康一 (1999); 青枯病菌による田植されたトマト植体内における菌原菌の動態と多様性. 日植病報65 (3): 363.
'Tomato Chuukanbohon Nou 9', a Tomato Parental Line with Bacterial Wilt Resistance.

Shinji Monma, Tatemi Yoshida, Hiroshi Matsunaga, Takanori Sato,
Tomoaki Narikawa, Yoshiteru Sakata and Ken-ichi Hida

Summary

‘Tomato Ano 6’ with a high level of bacterial wilt resistance and a larger fruit size was developed from crosses between moderately resistant ‘LS1811-2’ and the highly resistant F1 progeny of the cross between highly resistant ‘Kongou’ and the commercial quality inbred-line, ‘FV (12) -2-13-1-1’. Based on tests of the specific characters conducted in Chiba, Hyogo and Miyazaki Prefectures for three years, this line was registered as ‘Tomato Chuukanbohon Nou 9’, synonym of ‘Tomato Parental Line 9’.

The level of resistance to bacterial wilt in ‘Tomato Chuukanbohon Nou 9’ was clearly higher than those of the leading varieties for fresh market and of the rootstock, ‘Kagemusha’. Compared with the highly resistant cultivar ‘Hawaii7998’, the resistance was equivalent or slightly lower.

F1 between ‘Tomato Chuukanbohon Nou 9’ and a bacterial wilt-susceptible variety showed a lower level of resistance than that of the mid-parent value, and in the F2 generation, individuals with a resistance equivalent to that of ‘Tomato Chuukanbohon Nou 9’ appeared. It seems that the resistance to bacterial wilt is controlled by a small number of genes with major effect. In addition, no association of bacterial wilt resistance with the fruit size, color and shape was observed.

The fruit of ‘Tomato Chuukanbohon Nou 9’ is slightly flattened round, pink in outer color and the commercial size averages 160 to 200g. Since ‘Tomato Chuukanbohon Nou 9’ is an inbred-line, and shows a slightly low soluble solids content, is soft and is prone to fruit malformation compared with the commercial F1 variety, it is not suitable for commercial production. However, it is a highly promising breeding material for fresh-market variety with bacterial wilt resistance.

Although ‘Tomato Chuukanbohon Nou 9’ is resistant to Fusarium wilt race-1, it is susceptible to Fusarium crown and root rot, Verticillium wilt and ToMV.