仔魚飼育水槽内の流場の計測

<table>
<thead>
<tr>
<th>誌名</th>
<th>水産工学</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSN</td>
<td>09167617</td>
</tr>
<tr>
<td>巻/号</td>
<td>393</td>
</tr>
<tr>
<td>掲載ページ</td>
<td>p. 205-212</td>
</tr>
<tr>
<td>発行年月</td>
<td>2003年2月</td>
</tr>
</tbody>
</table>
Measurements of Flow Field in Rearing Tank of Marine Fish Larvae: A Case Study of the Seven Band Grouper *1, Atsushi Akazawa *2,3, Yoshitaka Sakakura *4, Hisashi Chuda *5, Toshihisa Arakawa *5, Atsushi Hagiwara *3

Abstract

Fish larvae are fragile against physical stress. However, few studies have been conducted to evaluate the flow field in rearing tanks. The flow field is generated by aerators, which are commonly used to provide oxygen as well as aid in the even distribution of live food. The procedure of fluid dynamics was used to analyze the flow field in rearing tank (1 m³ polyethylene tank) of seven band grouper larvae. Among fish species, grouper larvae are highly sensitive to physical stress; mass mortality caused by fluctuation has been commonly reported. When aerating rate exceeded 500 ml/min, strong vertical circulating flow was observed, and production of air bubbles at faster rate will have increased the chance of direct physical damage to larvae. The fast water flow can also have caused a decrease in encounter rate between larvae and prey organisms. When aerating rate was below 200 ml/min, there was no water movement in the central body of the vertical circulation flow. This area probably did not receive direct supply of oxygen from the aerator, which may have affected physiological status of larvae distributed in the area. The estimation based on fluid dynamics analysis was consistent with experimental data of larval growth, feeding incidence, and mortality obtained from larval rearing trials. Aerating rate at 200 ml/min gave highest survival and growth of grouper larvae.

1. 縮言

魚類の生活史において最も死亡率の高い時期は、一般に卵から孵化した仔魚が稚魚になるまでの初期生活史の期間に相当し、初期減耗と呼ばれる。この初期減耗の大きな要因として、飢餓、被食、および物理的条件（一旦海流による不適切な環境への輸送）が挙げられてい る1）。魚類の稚魚生産では、飼料条件、物理・化学的な水質環境要因を目的的に制御することにより、初期減耗を極力抑えることが大きな課題となる。

これまで様々な魚種に対して稚魚生産が試みられ、既にマダイ、ヒラメなどの魚種では大量の稚魚生産に成功している。この養殖の成功は、仔魚に適切な飼料源の選定や給餌量、および栄養面の強化といった飼料条件の側面からの基礎研究に基づく技術改善に依るところが大きい。しかし、これらの養殖可能魚種の稚魚生産でも、安定した養殖が常に実現できることは限らない。この原因としては、親魚の卵質が一定しないことに基づく場合もあり、

2001年11月21日受理，2002年4月22日受理

キーワード：マハタ，仔稚魚飼育水槽，流場，計測

Key words: Epinephelus septemfasciatus, Larvae Rearing Tank, Flow Field, Measurement

*1 Faculty of Mercantile Marine, Kobe University of Mercantile Marine, 5-1-1 Fuku-Antani, Higashiinada, Kobe, 658-0022, Japan (神戸商船大学商船学部 〒658-0022 神戸市東灘区深江田町5-1-1）

*2 Irigo Institute Co., Ltd., 377 Eihama-shinden, Atsumi, Aichi, 441-3605, Japan (株式会社いらご研究所 〒441-3605 愛知県額井郡額井町鰐崎田新田377）

*3 Graduate School of Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan (長崎大学大学院生産科学研究科 〒852-8521 長崎市文教町1-14）

*4 Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan (長崎大学水産学部 〒852-8521 長崎市文教町1-14）

*5 Nagasaki Prefectural Institute of Fisheries, 1551-4 Taira-machi, Nagasaki, 851-2213, Japan (長崎県水産試験場 〒851-2213 長崎市大府町1551-4）
り得るが、物理・化学的な水質環境要因が仔魚にとって不適切だった場合もあると考えられる。水質環境の管理は飼育技術者の経験と勤勉に基づいていることが多く、とに、飼育水槽内の水の流れ方をあらかじめ適度に調整することを仔魚飼育のコツとして挙げる技術者は多い。実際、魚種によっては、孵化仔魚の体サイズが著しく小さい場合があり、適サイズの餌料種の選定のみならず、飼育水槽内に生じる水流等の物理環境要因の設定を誤ると大量へい大魚を増えることも少なくない。したがって、魚種の初期成長要因の一つである物理条件の検討もまた、種苗生産の技術開発に基礎知見を供するための重要なアプローチといえよう。具体的には、初期成長水槽のため効率良い飼育をするには、水槽内の流れの速度分布を正確に把握し、さらに通気で生じた流れ自体のコントロールが重要であると考えられる。さらに、小規模な角型水槽内の流れの簡易的計測や通気法の検討を行った例は見られないが、厳密に体系立てて計測を行った例はほとんどなく、水槽の実態把握はなされていないのが現状である。そこで本研究では、流体力学的観点から水槽内の流れの動態を詳細に明らかにすることを目的とし

本研究では、マハタ（*Epinephelus septemfasciatus*）の仔魚飼育事例を参考に、そのときの飼育水槽内の流れを計測した。種苗を含む温帯・熱帯魚のハタ科魚類は日本および東南アジア諸国で、商品価値の高い重要な水産資源である。しかし、ハタ類の種苗生産では、孵化後 2～3 日目（日令 3 日目）以降に見られる大量消長によって、未だ十分な種苗生産に至っていないのが現状である。これとは、孵化時の大長が 2mm 前後と魚種の中でも小さい体サイズのハタ類仔魚が、通気のために気泡により水面に達され、表面強力に捕まりへい大魚、いわゆる浮上へい死魚体数が非常に多いためである。また、ハタ類仔魚は、他の種苗生産対象魚種に比べてハンドリングなどの物理的なストレスに対して特に弱い。したがって、水槽がマハタの初期成長に与える影響、他の種苗生産可能魚種よりも特に強く、と判断される。このように、ハタ類の種苗生産技術開発は、種苗水槽内の流れを定量的に研究することによって、繁殖の進歩を遂げる可能性がある。さらに、このような定量的な流れの計測によって、他の魚種の種苗生産技術改良にも大切に適用可能であると考える。

2. 材料および方法

1）マハタの通気量と生残率の関係

ハタ科魚類の種苗生産は飼育段階初期の大規模消長が著しく、国内での万単位の種苗生産例は少なく、時には全滅することもある。このような孵化後 2、3 日目以降に見られる大量消長の原因解明のため、著者らは飼育水槽に見られる浮上へい大魚消滅の目的として、飼育水槽内の適正通気量とフィードオイルの酸水添加効果について実験的調査を行った。ここでは飼育水槽内の流れに密に関連する適正通気量と仔魚の消滅との関係を明確にする演習を目的とした。1999年 5 ～6 月に長崎県鯨水産試験場が飼育しているマハタ親魚から得た卵を人工授精した。受精卵は 1kl 容器のアルテミア孵化槽に入り、1000ml/min の通気条件で卵管理を行い、孵化前日に飼育実験槽 8 箇所に各 2 万粒ずつ収容した。飼育実験水槽には黒色ポリエチレン製の円形水槽を用いた（Fig. 1；上面内径 130cm、底面内径 130cm）。この水槽に飼育時には水温約 25℃の砂温海水 1トン（深水 68cm）を注流した。海水は製氷のため紫外線照射を施し、換気率 100％日とした。エアーストーンは直径 5cm の球形のものを水槽底部中央に 1 個設置した。エアーストーンにビニールチューブを接続し、エアーコン（SPP-6GA、テクノ高橋製；常用吐出圧力 0.1kgf/cm²（0.01MPag），吐出風量 8.5l/min）から通気した。通気量は、エアーコンとエアーストーン間のビニールチューブに取り付けた 3 方検圧で調節し、通気量の測定は 1分間当たりの吐出空気を水中でビーカーに直接受け取られた。水槽内の通気量を 50ml/min、200ml/min、1000ml/min および無通気の 4 実験区に分け、それぞれ 2 箇所ずつを設定した。各チューブは開口時の口径が小さく、遊泳能力も低いため、
開口直後の初期飼料としては体サイズが小さいワムシが有効である5)。そこで本研究では、小型のいわゆるSS型ワムシ（Brachionus rotundiformis, インドネシア株、被甲長80〜156μm）を飼料として与えた。本実験では、ワムシの給餌量は水槽中に10個体/mlとなるように1日2回与えた。

4飼育の通気条件下でマハタ仔魚の飼育を孵化後9日（日令9）まで行い、成長、抵抗ワムシ数、生残、浮上死数について検討した。孵化日から日令3まで毎日、それ以降2日毎に各水槽より仔魚を20尾ずつサンプリングして全長を計測し、成長の指標とした。また、これらの仔魚が開口した日令5以降は、実体顕微鏡下で消化管を解剖し、消化管内に残存するワムシを計数して、抵抗ワムシ数を求めた。生残率は、孵化日および隔日毎の夜間、単位体表面からの仔魚の尾数を1トンに換算して求めた。浮上へい死数は、毎日10時および15時に毎日同じ方法で計測し、累積計数した。

2）水槽内の通気による流場の計測実験
仔魚飼育水槽内の通気による流れの計測実験を行った。水槽及びエアーストーンは仔魚飼育実験水槽と同じ大きさであるが、流れの様子が容易に観察できるように、水槽は透明のポリカーボネイト1つのみを用いた。水槽内の流場計測の目的であるため、清水（水道水）を用い、水深は仔魚飼育実験と同じ78cmとした。実験時の水温は23.0℃であった。

流れの計測には3成分電磁流速計（VMT3-200-12P, KENEX 社製）を用いた。この流速計は、x, y, zの3成分の流れと流速の計測が可能である。電磁流速計を移動台に固定し、水平および垂直方向の移動と、移動量の微調整ができるようにした。座標系は、水槽の中心に原点をとり、垂直方向にy軸、中心から静止水面上半径方向にx軸、x軸に直角方向にz軸とした。エアーストーンは水槽底部中央に1個だけ設置したため、x軸およびz軸を含む垂直断面前の水槽半面のみ計測した。各計測点の平均流れを計測した。

3）結果および考察

1）マハタ仔魚飼育の通気量と成長・生残
実験終了時の日令9での全長は、50ml/min区が2.90 mm、200ml/min区が2.91mmと両者に差が見られないのに対し、1000ml/min区および無通気区では2.85mmとなり、若干成長が遅れた（Fig.2）。このことから、無通気および高い通気量では仔魚の成長が悪く、適度な通気量が仔魚の成長を要求することを示している。

通気量と抵抗ワムシ数との関係を見ると、50ml/min区および200ml/min区の場合、マハタ仔魚の抵抗数に差が見られないのに対し、1000ml/min区では日令6, 7で、無通気区では日令7以降抵抗数が低下した（Fig.3）。萱野ら61はキジサバ（Epinephelus achoena）仔魚による初期飼育と成長、生残のメカニズムについて基礎的な研究を進めてきたが、給餌飼育と無給餌飼育の比較研究で成長に伴うワムシ抵抗数、生残率の変化を調査した。萱野らはワムシの大きさを成長段階に従って変化する効果的な給餌方法について詳細に検討しているが、通気量との関係については論じていない。本研究の1000ml/min区で抵抗数が低下したのは、シーフィード能力の低いマハタ仔魚にとって流れが連なってくるとワムシを捕獲できなかったためと考えられる。逆に無通気では水質の悪化、および水槽内のワムシの分布が一様でないために仔魚がワムシに遭遇する機会が減り、摂餌行動が低下したことにより増殖するものと思われた。その結果、仔魚の成長は低かった（Fig.2）。また、適度な流れがある場合、仔魚の周りに流れで移動したワムシが到着し、摂餌活動が活発となり、仔魚の成長を促進すると判断された。

通気量と生残率の関係を見ると、200ml/min区が最も生残率がよかった（Fig.4, 59.8%）。

Fig.2 Effect of aeration rate on growth of Epinephelus septemfasciatus larvae.

Fig.3 Effect of aeration rate on feeding activity of Epinephelus septemfasciatus larvae.

Fig.4 Effect of aeration rate on growth of Epinephelus septemfasiatus larvae.

Fig.5 Effect of aeration rate on feeding activity of Epinephelus septemfasciatus larvae.
Fig. 4 Effect of aeration rate on percent survival of *Epinephelus septemfasciatus* larvae.
- 1000 ml/min；△ 200 ml/min；
- 50 ml/min；■ no aeration.

Fig. 5 Effect of aeration rate on floating death of *Epinephelus septemfasciatus* larvae.
- 1000 ml/min；△ 200 ml/min；
- 50 ml/min；■ no aeration.

ml/min 区および無通気区の場合、日令 5 まで生存率はほとんど差は見られないが、日令 9 で 50 ml/min 区は 37.8 %、1000 ml/min 区は 18.1 %、無通気区は 17.5 % となり、通気量が最も適量の場合と無通気の場合には生存率が著しく低下した。さらに、無通気区の水槽では水が蒸し、日令 7 以降飼育水槽内に多くの水蒸気が発生した。初期飼育段階での生存に関わる要因として、卵長、飼育開始時の適正な飼料の供給および摂餌量の少なさ、または飼育環境の不備等があげられる。また、岩谷はヒジハタを用いて通気量が増加すると急激に仔魚生存率の低下を認めること、両者に優位な相関が認められたとしている。しかし、本研究の結果から判断すると、無通気では飼育水の水質悪化が、また通気量が増加すると、遊泳能力の乏しい小さな仔魚にとって摂餌・遊泳の困難な環境となり、生存率の低下を招く。したがって、マハタ仔魚の飼育には適正な通気量の維持が要求され、通気による流場の管理が重要であると考えられる。

本実験では、実験当初から通気量 200 ml/min が最も浮上へい死数が少なく、続いて、50 ml/min および無通気、1000 ml/min の順に増加していた（Fig. 5）。これらのことから、生存率と同様に、通気量が浮上へい死の原因に密接に関係することを示唆している。山岡および Yamaoka et al. はヒジハタ仔魚を用いて浮上へい死の発現に関与すると考えられる光、油膜および流速との因果関係について実験的に考察した。それらの結果、水面障壁を踏くし、水面にフィードオイルで油膜を造ると、かつエアレーションによる水流があるときに浮上へい死が減少することを見た。仔魚がエアレーションによって水面に達されると表面張力によって水面に押し付着、さらに付着時に仔魚の体表から分泌される多量の粘膜で自由が束縛され、やがて体力消耗によりへい死すると考えられている。したがって、水面の表面張力を軽減するために油膜を水面に形成することが、浮上へい死を防除するために有効であるとされる。また水流に関して、水面に付着した仔魚が水面近傍での水深流れに動かされ容易に水面から離脱できようと推測している。しかし、通気による水流に関して流場の定性的、定量的評価を行っていない。

以上、通気量とマハタ生存率の関係の実験から通気による速度が飼育環境の中で重要な要因であること、適正な通気量による飼育水槽内の流場の管理が大量減耗の防防止策にとって重要であることがわかった。

2）水槽内の通気による流場

各通気量に対する水槽中央ζ軸上の流速分布をFig. 6 に示した。流れの目視観測では、エアーストーンからの気泡分布は上向きに円錐形であった。この気泡に追従した流れの上昇流が発生したが、ζ 軸周りの流れは吐出気泡の影響から絶えず変動した。平均流速ベクトルで見た流れの強さは、水槽底部で弱く、上向きに次第に加速され、中央の深さで最も速くなった。しかし、水面付近では自由表面境界のために弱くなり、それによって水平方向の流れが顕著となった。通気量と水槽中央ζ軸上の平均流速との関係は、対
Fig. 7 Relation between mean flow velocity on center of larval rearing tank and aeration rate.

教関数的に変化し、通気量と平均流速に一定の関係があることがわかった（Fig. 7）。

5種類の通気量（50, 200, 500, 900, 7800ml/min）で水槽鉛直断面内の3次元流れの計測を行った結果をFig. 8～12に示した。ここで、各図の左側が水槽中央部、水槽底部の円形がエリアーストークである。縦軸は深さz、横軸は水平方向の距離xを示し、矢印で流速ベクトルを表記した。

最大通気量の7800ml/min は、実際の仔魚飼育の通気と比べると極端に多いが、水槽内の三次元流れの全体像が把握できる（Fig. 8上図）。流速のx, z成分のu, w速度分布では、水槽中央部周辺の水が取り込みながら気泡に追従した強い上昇流があり、水面付近でw成分が減衰、u成分が次第に増加した。このu成分により、水面近傍流れは水槽中央部から水平方向に流れている。水槽内の微小さなゴミの運動を追跡した目視観測では、水槽中央部の水面は強い上昇流に伴い脈動して泡立てていた。水面上に浮遊した気泡が水平流で放射状に移動し、やがて途中で消滅し、水面は乱流のため絶えず乱れていた。水槽の側壁面に達した流れは水面近くで減衰しているように見えるが、Fig. 8に見られるように、水面下の流れは比較的強い循環流となって、側面に沿って下降していた。さらに水槽底面に達した流れは再び水平方向に水槽中央部に向かって流れ、計測断面全体では時計回りの鉛直循環流を形成した。この循環流の中心位置は水深のおおよそ1/3の深さにあり、そこでの流れの強さは極小であった。

Fig. 8 Flow velocity distribution in larval rearing tank. (M=7800ml/min)

飼育に用いる通気量より強いと判断される通気量である（Fig. 9）。目視観測では、水面近傍の流れの乱れが減衰し、緩やかになる。水槽内全体の流れは7800ml/min区の場合とほとんど同じであった。

ダイやサメの仔魚飼育では一般的な通気量の500ml/min区の場合（Fig. 10）、マサトの仔魚飼育では200ml/minに比べて生残率の低下と浮上へい死の増加が見られた。事実、浮上へい死への関連が示唆される水面極く近傍の水平方向の流れは、7800ml/min, 900ml/min区と同様に強かった（Fig. 10上図）。また水面に近いy方向のu成分の速度勾配が大きく、反対に深くなると流れの強さは急激に減衰した。水槽側壁部の下流流も顕著で、水槽底面付近の水槽中心に向かう水平流れは若干弱くなった。

水槽全体の鉛直循環流の中心位置がFig. 8および9に比較すると、鮮明でなくなり、広範囲に水が循環していると考えられる。各地点での循環流の強さの比較のため、
循環流中心部の透かした流れのオーダーを1とすると，
水面付近の水平流れが10，水槽中央部の上昇流れが100の
オーダーにも達することがある。もし初期期間段階での
仔魚にとって，循環流の中心部分が最適な環境であると
すれば，このように高いオーダーを示す場所では，仔稚
魚に与える流れの負荷が相当大きく何らかの影響を与え
るものと考えられる。

本研究で，マハタの初期飼育環境で最適な通気量とし
た200ml/minの場合，目視観測によると，エアーストー
ンからの気泡量も少なく，水槽内部の流れの強さは全体
に減少するが，水槽中央部の上昇流れおよび水面近傍の水
平流れは顕著であった（Fig.11）。水槽側壁に沿った下降
流の速度ベクトルの方向および大きさが一部乱れていた。
これはここでの流れが穏やかであり，しかも電磁流速計の
性能面から固体壁面近傍の微小流れの評価が難しく，誤
差によるものと考えられる。したがって，定量的な精度
は低下するが，定性的に壁面近傍で微小な下降流がある
と考えられる。さらに，水槽断面内の流れは通気量が多い
場合と同様に，計測断面内で右回りの循環流が存在す
ることがわかった。循環流の中心位置は水の表面が
より一層広がって鮮明でないが，Fig.8〜10 および同
じ位置にあった。

50ml/min区の水槽全体の流れは他よりも一層微小とな
り，気泡も減少した。しかし，水槽中央部の上昇流れは
顕著であり，気泡に伴う流れが強いことを示した（Fig.
12）。水面，水槽側壁面および底面付近での速度ベクト
ルの乱れが著しいが，これは前述の通り，使用した電磁
流速計の精度面の限界であり，このような通気に対応し
た微流の計測が困難であることによる。微小流に対し
て，今後他の計測法，例えばPIV等の画像処理技術によ
る流場計測で対応していきたい。誤差による速度ベクト
ルの乱れが酷く，流れを定量的に評価できないが，定性
的に通気量が多い流れによく似た循環流を形成していると考えられる。鉛直循環流の中心は鮮明でなく、水の蒸発範囲はより一層広がった。この部分の実際の流れは微小、あるいは静止して、無通気状態と同じ環境になっているのかもしれない。これが生残率の低下の原因であると予測される。今後の研究でこの点をさらに追求する予定である。

以上のことで、通気量の変化に対する流場の定性的および定量的把握が出来た。その結果、いずれの通気量においても、流場は計測範囲内で時計回りの顕著な鉛直循環流（u-w成分）を形成するが、水槽内の水平循環流（u-v成分）は小さいことがわかった。流れの強さは通気部分の上昇流、水面近傍の水平流、側壁近くの下降流および水槽底面の水平流が顕著であった。

マハタ仔魚に適切な流場の詳細な観察は現時点で困難であるが、2章の通気量200ml/minが最も適するとした結果との因果関係は次のようになる。通気量が500ml/min以上では、仔魚に与える気泡および強い鉛直循環流の影響から仔魚への負荷が増大する。逆に、通気量が50ml/min以下では、これらの影響は減少するが、逆に鉛直循環流の中心部の流れのほとんど無き死水域となり、無通気状態であるため仔魚飼育に適さないのである。したがってマハタでは、水流のマハタ仔魚に対する物理的ストレスが少なく、かつ微通気による水槽内の水質悪化を防げる通気量が200ml/minに相当したのだと考えられる。今後マハタ仔魚への流れの強さによる負荷の推定を、数値流体力学の手法を用いた仔魚の魚体周りの圧力抵抗や粘性摩擦抵抗などの推定から行いたい。
4. まと め

マハタ仔魚飼育における通気量と生残率との関係、および仔魚飼育水槽内の通気による流れの定量化を行った。初期生残率と水槽内の通気による流れの計測実験について、次のような結論を得た。
1) 通気量が200ml/minの場合、生残率・成長・摂餌状況が最も多い。浮上死数もまた通気量が200ml/minの場合に最も少ない。通気量が200ml/minよりも増加あるいは減少すると浮上死数は増加する。
2) 通気による気泡の浮上に伴う水槽内に流れが発生する。水槽中央のz軸を中心とした鉛直断面内に顕著な鉛直循環流（対流）が発生するが、z軸周りの水平循環流は小さい。
3) 水槽半面内の鉛直循環流れは、水槽中央部の気泡の浮上領域、水面極く近傍および水槽の側壁部分で比較的速く、循環流の中心付近で遅くなる。
4) 体長数mmの仔魚にとって、水槽内の鉛直循環流の中心部は流れが緩やかで適当な環境であるが、水槽中央部および水面極く近傍が流れが速く、仔魚に対する物理的ダメージの大きい環境であると思われる。
5) マハタの通気量と生残率の関係実験から得た最適通気量200ml/minの場合、気泡および鉛直循環流の強さがマハタ仔魚の初期飼育に最も適することが予想できる。

今後は、循環流の中心部の微細な流れの詳細な計測、数値計算による水槽内の流動の予測、通気時の気泡の大きさと仔魚生残率との因果関係の解明、およびマハタ仔魚に与える流れの負荷の推定に関する知見を積み重ねることが必要であると考える。以上をもとに、水槽内部の流場管理および仔魚に快適な環境である水槽および通気機器の設計・開発を行うことが最終的な目標である。

本研究の一部は地域研究開発促進拠点支援事業（RSP）可能性試験の平成11、12年度委託研究、および長崎県地域結集型共同研究事業「ミクロ海洋生物の生理機能活用技術の開発」によって実施した。

参考文献
1) 南・卓志: 初期成長研究の方法論; 研究の歴史, 田中・克・渡邉良明編「魚類の初期減少研究」恒星社, 東京, pp.9-20, 1994.