地域内有機質資源を活用した持続的農業生産技術の確立（3）
地域内有機質資源を活用した持続的農業生産技術の確立（第 3 報）
—連用 3 年目—

渡辺 潤・佐藤寛子・加藤真奈子・植村鉄矢

要 約
牧草生産における家畜ふん堆肥の有効且つ適正な利用法の提示を目的に、家畜ふん堆肥と化学肥料の組合せ条件の違いが、牧草の生産性、飼料成分、嗜好性および牧草中の硝酸態窒素濃度を与える影響について検討を行った（連用 3 年目）。
1) 堆肥 50%代替以上で、草丈および収量が高い値を示す傾向が認められた。
2) 堆肥代替率および腐熟度の違いによる一般飼料成分の変動は認められなかった。
3) 堆肥代替区では、化学肥料区に比べて、粗灰分の上昇、カルシウム、マグネシウムの低下、リン、カリウムの上昇そしてミネラルバランス（K/Ca+Mg）当量比の上昇が認められた。
4) 堆肥代替利用区においても、牧草中の硝酸態窒素濃度の上昇は認められず、危険水準とされる 0.2%以下であった。
5) 化学肥料区は完熟堆肥代替区に比べ選択的に摂食される傾向が認められた。

目的
環境負荷低減および資源循環に配慮した適正な堆肥の利用が求められるものの、堆肥施用が粗飼料の生産性や飼料成分へ与える影響、特にミネラル成分以外の飼料成分については未だ不明な点が多く、農家が家畜ふん堆肥を粗飼料生産に利用する場合、の確実な情報は意外に少ない。そこで、本試験は、牧草生産における家畜ふん堆肥の有効且つ適正な利用方法の提示を目的に、家畜ふん堆肥と化学肥料の組合せ技術および生産した牧草の乳牛による嗜好性について検討を行い、連用 3 年目における影響について明らかにする。

材料および方法
1) 供試草地：2005 年 9 月造成のオーチャードグラス単播草地（1 区画 3m×3m, 3 区画 ×6 試験区=18 区画）を供試し、年間施肥量 N20kg/10a、施肥配分は早春 10kg、一番草後 6kg、二番草後 4kg とした。
2) 《実験 1》堆肥と化学肥料施用割合の異なる牧草生産試験：慣行区（化学肥料 100%：化学肥料由来窒素 10kg）試験区 1 (30%代替区：化学肥料由来窒素 7kg, 堆肥由来窒素 3kg), 試験区 2（50%代替区：化学肥料由来窒素 5kg, 堆肥由来窒素 5kg）, 試験区 3 (80%代替区：化学肥料由来窒素 2kg, 堆肥由来窒素 8kg) の計 4 区を設定した。施肥は 2008 年 4 月 25 日に実施し、化学肥料（N20%, P10%, K10%）と堆肥（乳牛ふんを主原料とする完熟堆肥）を用いた。一番草（出穂期；2008 年 5 月 26 日時）について草丈および収量を調査し、飼料成分として水分、粗蛋白質、粗脂肪、粗繊維、粗灰分、カルシウム (Ca), マグネシウム (Mg), リン (P), カリウム (K) を常法（自給飼料
品質評価研究会編，2001）により測定した。また、牧草中のデタジェント繊維分画（NDF, ADF）と高消化性繊維、硝酸亜窒素濃度およびTDN含量を求めた。尚、高消化性繊維含量（ヘミセルロース含量）は、NDF値よりADF値を差し引くことにより（出口，2006）、TDNはADF含量から「粗飼料の品質評価ガイドブック」自給飼料品質評価研究会編，2001」の推定式より算出した。硝酸亜窒素は高速液体クロマトグラフィーを用いて、飼料成分分析基準法に沿って測定した（飼料分析基準研究会，2004）。

3) 《実験2》堆肥熟成度の異なる牧草生産試験：試験区4（30%代替区，化学肥料由来窒素7kg，堆肥由來窒素3kg），区5（50%代替区，化学肥料由来窒素5kg，堆肥由來窒素5kg）とした。施肥日および施肥した化学肥料は実験1と同様であり，堆肥は，一般農家で生産された中熱相当の堆肥（腐熟度1〜3：平均値1.7，酸素消費量を指標）を用いた。また，一番草について草丈，収量および飼料成分について調査した。方法は実験1に同様である。

4) 《実験3》堆肥利用により生産された牧草の乳牛における嗜好性試験：ホルスタイン種泌乳乳牛3頭を供試し，実験1および2において生産された牧草を乾草調製し，カフェテリア方式による比較試験を1対の組合せに対し3回実施した。1試料における提示乾草は，農用裁断機により細切，量は各500gとし，採食開始から15分間，10秒間隔の瞬間サンプリングにより類の向き（右饲槽，左饲槽，その他）をデジタルビデオカメラにて撮影，記録した。解析は15分後の残飼量および採食開始から6分までの飼槽の選択率について行った。

5) 統計処理：一元配置分散分析を行った後，Tukeyの方法で検定を行った（吉田，1975）。

結果
1) 実験1および実験2：
1-1）草丈（表1）：堆肥50%代替以上である試験区2，3，5が高く約114cm（最も高い値を示したのは，試験区5の114.9±0.8cm）であった。慣行区および試験区4が約107cmと低い値を示した（最も低い値を示したのは，試験区4の107.5±1.2cm）。試験区間に有意な差は認められなかった。

1-2）乾物収量（表1）：化学肥料50%，完熟堆肥50%の試験区2が最も乾物収量が多く，1aあたり80.1±3.3kgであった。また，堆肥80%代替の試験区3は，次いで78.4kgと高い値であった。試験区1と試験区4では顕著に低値を示し，それぞれ67.9kg，64.9kgであった。試験区間に有意な差は認められなかった。

1-3）飼料成分：
ア）粗蛋白質（表2）：試験区4および5で高い値を示し10.7および10.4%，試験区2が最も低く9.6%であった。試験区間に有意な差は認められなかった。中熟堆肥を利用した試験区4，5は，完熟堆肥施用区に比べて高い傾向が認められた。

イ）粗脂肪（表2）：試験区1で3.6%と高い値を示し，試験区2および3が3.2%と最も低い値であった。

ウ）粗繊維（表2）：試験区3で36.8%と高い値を示し，慣行区が35.3%と最も低い値であった。

エ）粗灰分（表2）：試験区3が8.8%と高い値で，慣行区が6.5%で最も低い値であった。堆肥の熟度による違いは認められなかったものの，堆肥代替率の
上昇に伴って高い値を示した。
オ）ミネラル成分（表 2）：試験区 3 において Ca と Mg が、それぞれ 0.19%、0.13%と他区に比べて低値を示した。Pは、堆肥利用区が 0.28～0.31%と慣行区（0.23%）にくらべて高い傾向を示した。Kは慣行区（2.66%）が、堆肥利用区（3.00～3.28%）に比べて明らかに低い値を示した。ただし、堆肥代替率と K 濃度に相関関係は認められなかった。飼料中ミネラルバランスの指標となる K/Ca+Mg 当量比は、慣行区が最も低く 2.83 であり、堆肥代替割合の上昇と共に高い値を示した。中熟堆肥区は、完熟堆肥区に比べて低い値であった。ミネラル成分各項目および当量比について試験区間に有意な差は認められなかった。
カ）データジェント繊維分画および高消化性繊維（表 3）：NDF は、試験区 1 および試験区 4 で最も高く 73.5%、73.7%、慣行区で最も低く 71.1%であった。堆肥利用区は 2%程度高い値を示した。

ADF は、中熟堆肥を利用した試験区 4 および 5 で高い値を示し 40.8%、40.7%であり、慣行区が最も低値で 38.9%であった。高消化性繊維は、各区同程度で、32~33%であった。
キ）TDN（表 3）：慣行区で最も高く 58.9%であった。堆肥代替割合による TDN 含量の違いは認められなかったが、完熟堆肥施用区で約 58%、中熟堆肥利用区で 57.5%であった。
ク）硝酸態窒素（表 4）：各区も危険水準である 0.2%以下であり、最も高い値を示した試験区 2 は 0.08%であった。試験区間に差は認められなかった。

<table>
<thead>
<tr>
<th>表1. 草丈および収量</th>
</tr>
</thead>
<tbody>
<tr>
<td>慣行区</td>
</tr>
<tr>
<td>草丈(cm)</td>
</tr>
<tr>
<td>乾物収量(kg/a)</td>
</tr>
</tbody>
</table>

値は平均値±標準誤差
表2 一般飼料成分およびミネラルバランス（乾物%）

<table>
<thead>
<tr>
<th></th>
<th>慣行区</th>
<th>試験区1</th>
<th>試験区2</th>
<th>試験区3</th>
<th>試験区4</th>
<th>試験区5</th>
</tr>
</thead>
<tbody>
<tr>
<td>水分</td>
<td>78.7±1.2</td>
<td>81.7±1.6</td>
<td>80.1±0.9</td>
<td>80.7±1.4</td>
<td>81.0±0.4</td>
<td>80.5±0.9</td>
</tr>
<tr>
<td>蛋白質</td>
<td>10.0±1.1</td>
<td>10.2±0.8</td>
<td>9.6±0.9</td>
<td>10.0±0.9</td>
<td>10.7±0.1</td>
<td>10.4±0.1</td>
</tr>
<tr>
<td>脂肪</td>
<td>3.4±0.2</td>
<td>3.6±0.1</td>
<td>3.2±0.3</td>
<td>3.2±0.1</td>
<td>3.5±0.2</td>
<td>3.4±0.2</td>
</tr>
<tr>
<td>粗繊維</td>
<td>35.3±0.6</td>
<td>36.1±0.5</td>
<td>35.8±0.5</td>
<td>36.8±1.4</td>
<td>36.4±0.6</td>
<td>38.2±0.4</td>
</tr>
<tr>
<td>粗灰分</td>
<td>6.5±0.4</td>
<td>7.6±0.3</td>
<td>7.6±0.7</td>
<td>8.8±1.1</td>
<td>7.7±0.5</td>
<td>7.8±0.4</td>
</tr>
<tr>
<td>Ca</td>
<td>0.24±0.01</td>
<td>0.21±0.02</td>
<td>0.19±0.02</td>
<td>0.19±0.03</td>
<td>0.22±0.01</td>
<td>0.20±0.04</td>
</tr>
<tr>
<td>Mg</td>
<td>0.15±0.01</td>
<td>0.14±0.00</td>
<td>0.13±0.01</td>
<td>0.13±0.01</td>
<td>0.16±0.00</td>
<td>0.13±0.01</td>
</tr>
<tr>
<td>P</td>
<td>0.23±0.04</td>
<td>0.28±0.02</td>
<td>0.29±0.02</td>
<td>0.31±0.02</td>
<td>0.30±0.01</td>
<td>0.28±0.02</td>
</tr>
<tr>
<td>K</td>
<td>2.65±0.16</td>
<td>3.28±0.24</td>
<td>3.08±0.28</td>
<td>3.27±0.29</td>
<td>3.23±0.20</td>
<td>3.00±0.14</td>
</tr>
<tr>
<td>K/Ca+Mg当量比</td>
<td>2.83±0.02</td>
<td>3.88±0.33</td>
<td>3.95±0.40</td>
<td>4.31±0.58</td>
<td>3.40±0.20</td>
<td>3.71±0.35</td>
</tr>
</tbody>
</table>

注: 値は平均±標準誤差

表3 ダンジェント繊維分画およびTDN（乾物%）

<table>
<thead>
<tr>
<th></th>
<th>慣行区</th>
<th>試験区1</th>
<th>試験区2</th>
<th>試験区3</th>
<th>試験区4</th>
<th>試験区5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDF</td>
<td>71.1±0.5</td>
<td>73.5±0.5</td>
<td>72.4±0.9</td>
<td>73.1±0.9</td>
<td>73.7±2.0</td>
<td>73.0±0.7</td>
</tr>
<tr>
<td>ADF</td>
<td>38.9±1.0</td>
<td>40.3±0.2</td>
<td>39.9±0.4</td>
<td>39.9±0.6</td>
<td>40.8±0.9</td>
<td>40.7±0.4</td>
</tr>
<tr>
<td>高消化性繊維</td>
<td>32.2±1.2</td>
<td>33.1±0.7</td>
<td>32.5±1.0</td>
<td>33.2±1.3</td>
<td>32.9±1.1</td>
<td>32.3±0.5</td>
</tr>
<tr>
<td>TDN</td>
<td>58.9±0.7</td>
<td>57.9±0.1</td>
<td>58.2±0.3</td>
<td>58.2±0.5</td>
<td>57.5±0.7</td>
<td>57.5±0.3</td>
</tr>
</tbody>
</table>

注: 値は平均±標準誤差

表4 硝酸態窒素濃度（%）

<table>
<thead>
<tr>
<th></th>
<th>慣行区</th>
<th>試験区1</th>
<th>試験区2</th>
<th>試験区3</th>
<th>試験区4</th>
<th>試験区5</th>
</tr>
</thead>
<tbody>
<tr>
<td>硝酸態窒素</td>
<td>0.03±0.02</td>
<td>0.07±0.01</td>
<td>0.08±0.05</td>
<td>0.04±0.03</td>
<td>0.04±0.02</td>
<td>0.03±0.02</td>
</tr>
</tbody>
</table>

注: 値は平均±標準誤差

2）実験3：
2-1）堆肥代替率と嗜好性：慣行区が試験区1, 2, 3 に比べ選択的に採食される傾向を認められた。選択率では、慣行区（57.7±6.9%）と試験区1（25.0±3.3%）、慣行区（70.1±2.6%）と試験区2（25.0±3.3%）の間には有意な差が認められた（図1）。残餌量は、わずかであり採食性に差は認められなかった。
2-2）堆肥腐熟度と嗜好性：試験区1と4および試験区2と5の間には選択性に違いは認められなかった（図2）。残餌量は、わずかであり採食性に差は認められなかった。
まとめと考察
本試験の結果をまとめると、① 堆肥50%代替以上において、草丈および収量が多い値を示す傾向が認められた。② 堆肥代替率および腐熟度の違いによる一般飼料成分の変動は認められなかった。③堆肥代替区では、化学肥料区に比べて、粗灰分の上昇、Ca、Mgの低下、P、Kの上昇そしてK/Ca+Mg量比の上昇が認められた。④堆肥による化学肥料の代替利用においても、牧草中の硝酸態窒素濃度の上昇は認められず、危険水準とされる0.2%以下であった。⑤化学肥料区を完熟堆肥代替区に比べ選択的に採食する傾向が認められた。

草丈と収量の関係について、1、2年目では、堆肥代替率の高い試験区ほど草丈が高く、収量が低下する傾向を示していた。しかしながら、連用3年目では、堆肥代替率の高い試験区において草丈が高い傾向が同様であるが、収量も多い値を示し、1、2年目とは異なった特性を示した。草丈と収量については、そもそも相関関係があることが知られているが、連用2年目までの草丈と収量の関係については、前報（渡辺ら、2009）において、堆肥施用による裸地化の進行について示唆した。この裸地化の要因としては、オーシャークグラスが群落しやすい性質であることが考えられる。オーシャークグラスの群落化については、密植、高窒素な施肥条件で促進され、生存個体割合が大幅に低下することが明らかになっている（佐藤、1979）。窒素投与量が多くなると牧草中の粗蛋白質含量が増加することが知られており（佐藤、1979），連用1、2年目に慣行区で粗蛋白質含量が高かった結果を踏まえると、化学肥料施用割合が高いほど肥料窒素成分が、植物体に吸収されていたと考えられ、すなわち個体間競争が助長されていた可能性があり、結果として連用3年目に収量を低下させたとも推測される。また、堆肥代替割合が50%以上の試験区において草丈および収量が高かったことは、肥効が緩やかであるとされる牛糞を原料とする堆肥（後藤、2007）が、連用3年目でその効果を示したとも考えられるが、連用4年目以降、再び3年目と同程度の数値レベルが得られるか検討したい。

飼料成分各項目については、連用2年目では、慣行区と堆肥代替80%の試験区3がそれぞれ最大値または最小値を示し、堆肥施用量と比例的に成分含量の変動を示していた（渡辺ら、
2009）。しかしながら、連用3年目では、飼料成分項目において、有意な成分含量の違
いは認められなかった。このことは、草丈およ
び収量の部分で前述したように、緩やかで
あるとされた肥効が、連用3年目において、
安定的に放出されるようになったとも推測さ
れる。今後、地力向上への堆肥連用の効果も
明らかにするために、土壌成分分析による試
験区間の比較も含めて検討したい。
分析項目ごとでは、粗蛋白質含量は、1、2
年目と同様に、中熟堆肥を利用した試験区4、
5で高い傾向を示した。これは、第1報（渡
邇ら、2008）でも述べたように尿由来の即効
性窒素の影響が考えられるが、連用の効果か
らか、試験区間の差は小さくなっており、
今後よりその差は小さくなるものと考えられ
る。粗灰分含量は、化学肥料区で最も小さな
値を示し、堆肥代替率が上昇するにしたがっ
て、その含量が上昇していた。粗灰分含量に
影響している成分について、Ca, Mg, P, Kの
含量から推測してみても、慣行区と試験区3
の関係から、施用堆肥に含まれる成分が影響
していることは明らかであるが、最も多い含
有するカリウムのみの値からは説明がつけるこ
とが出来ず、他のミネラル成分も関与してい
る可能性が高い。ミネラルバランスについて
は、2年目に引き続き慣行区にくらべて試験
区1→2→3と堆肥代替率の上昇に伴って高くな
っていた。しかしながら、2年目の当量比に
比べると、1ポイント程度ずつ値が小さくな
ており、供試している化学肥料を、K20%か
らK10%と変更し、カリウム投入量を低下さ
せたとと思われる。しかしながら、カリウム
およびリンの含量は、標準値に比べても依然
高い値を示していることからも、連用4年目
においては、硫安や尿素などの窒素単体肥料
（伊達、1993）に切り替えることも検討され
る。
硝酸態窒素濃度については、全ての試験区
において0.1%以下の低い値であった。連用2
年目では、中熟堆肥50%代替区において高い
値を示していたものの、今回はその傾向は認め
られず、また、連用による影響も認め
られていない。硝酸態窒素濃度において試験
を実施する年によって、一定の傾向が認めら
れていない点については、植物体の生育ステ
ージの他、地下水への流下や日照条件（原田、
1985）等により、植物体中への窒素拡散が起
きていない為と考えられる。しかしながら、
持続的農業生産技術を確立するためにも、地
下水や土壌の分析も併せて今後検討する必要
がある。
嗜好性については、今回は化学肥料と完熟堆
肥区の比較において、全ての組み合わせで化
学肥料区を選択していた。これまで1年目で
は化学肥料区、2年目では完熟堆肥区そして3
年目では化学肥料区と、一定の選択性を示し
ていない。どの年次の試験においても供試家
畜は一方向の選択性を示すことから、試験設
計は適切であったと推測されるものの、2年
目までとは異なり嗜好性に関与するされる
NDFの上昇やTDN低下が認められなくなったと
考えられ、消化性や断続飼餌の試験から評
価することも必要かもしれない。
連用3年目の結果より、明らかに堆肥代替
率によって異なっていた連用2年目までの飼
料成分値の結果とは違い、化学肥料区と堆肥
代替区の間でその差が認められなくなったと
考えた。この事象は、牛ふん堆肥の栄養特性から
地域内有機質資源を活用した持続的農業生産技術の確立（第 3 報）

参考文献
後藤　院男．家畜糞堆肥と化学肥料の共存．畜産の研究．第 61 巻．第 2 号．245-253 頁．2007．
佐藤　彦．飼料作物栽培の基礎．114-121 頁．
農山漁村文化協会．東京．1979．
自給飼料品質評価研究会編．改訂飼料の品質評価ガイドブック．5-33，77-83 頁．
（社）日本草地畜産種子協会．東京．2001．
自給飼料品質評価研究会編．三訂版飼料の品質評価ガイドブック．20-21 頁．（社）
日本草地畜産種子協会．東京．2009．
飼料分析基準研究会．飼料分析法・解説．
4-61，62．芝光社．東京．2004．
伊達　昇．肥料便覧（第 4 版）．11-17 頁．農山漁村文化協会．東京．1993．
出口　健三郎．フォレージ・マネジメント：乳牛にとって“良質な飼料”とは何か？
～上手に良質飼料を確保・調達・利用するためには～．79-83 頁．デーリィ・ジャパン社．2006．
原田　勇．牧草の栄養と施肥．151-157 頁．養賢堂．東京．1985．
吉田　実．畜産を中心とする実験計画法．1版．
68-124 頁．養賢堂．東京．1975．
渡邊　潤．佐藤　院男．加藤　真姫子．植村　鉄矢．
良質牧草生産における環境負荷低減型堆肥生産技術の確立—堆肥と化学肥料の組合せ技術の検討—．
秋田県農林水産技術センター畜産試験場研究報告．第 22 号．
34-40 頁．2008．
渡邊　潤．佐藤　院男．加藤　真姫子．植村　鉄矢．
地域内有機質資源を活用した持続的農業生産技術の確立（第 2 報）—運用 2 年目
一．秋田県農林水産技術センター畜産試験場研究報告．第 23 号．16-22 頁．2009．